首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a sorbitol nucleating agent on crystallization of polypropylene (PP) in droplets was studied. Layer‐multiplying coextrusion was used to fabricate assemblies of 257 layers, in which PP nanolayers alternated with thicker polystyrene (PS) layers. The concentration of a commercial nucleating agent, Millad 3988 (MD) in the layers was varied up to 2 wt %. When the assembly was heated into the melt, interfacial driven breakup of the 12 nm PP layers produced a dispersion of submicron PP particles in a PS matrix. Analysis of optical microscope images and atomic force microscope images indicated that the particle size was not affected by the presence of MD. The crystallization behavior of the particle dispersion was characterized by thermal analysis. In the absence of a nucleating agent, the submicron particles crystallized almost exclusively by homogeneous nucleation at about 40 °C. Addition of a nucleating agent to the PP layers offered a unique opportunity to study the nature of heterogeneous nucleation. Nucleation by MD resulted in fractionated crystallization of the submicron PP particles. The concentration dependence of the multiple crystallization exotherms was interpreted in terms of the binary polypropylene‐sorbitol phase diagram. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1788–1797, 2007  相似文献   

2.
It was found that lanthanum complex of cyclodextrin derivative (??-CD?CMAH?CLa) was a highly active ??-nucleating agent for isotactic polypropylene (iPP) in this study. The influence of the nucleating agent on mechanical properties and isothermal and nonisothermal crystallization behavior of iPP has been investigated. Results showed that ??-CD?CMAH?CLa was efficient in inducing the crystallization of iPP into ??-modification (??-iPP), with K ?? value of 0.84, while the content of nucleating agent was 0.8?wt.%. ??-iPP could form extensively in the isothermal crystallization temperature range from 110?°C to 140?°C, and the highest amount of ??-crystal content was formed at 130?°C. Besides, it can be known that the addition of ??-CD?CMAH?CLa can obviously facilitate the overall crystallization process of iPP. Under nonisothermal condition, ??-iPP formed at the suitable cooling rates, ranging from 5?°C to 10?°C/min. Furthermore, the nucleation mechanism of ??-CD?CMAH?CLa for iPP was correlated to the special configuration of ??-CD?CMAH?CLa.  相似文献   

3.

Octamethylenedicarboxylic dibenzoylhydrazide (TMC-300) was used as a nucleating agent for isotactic polypropylene (iPP) for the first time. The Avrami method and the Caze method were used to analyze the isothermal and non-isothermal crystallization kinetics of iPP incorporated with TMC-300, respectively. During isothermal crystallization, the half crystallization time at 130 °C reduces from 130 s of virgin iPP to 44 s after addition of TMC-300, which reflects that TMC-300 increased the crystallization rate of iPP obviously. The crystallization activation energy decreases from 382.5 kJ mol?1 of virgin iPP to 275.3 kJ mol?1 of iPP/TMC-300. During non-isothermal crystallization, the crystallization peak temperature of iPP nucleated with TMC-300 was increased by 5.1 °C when compared to that of virgin iPP at the cooling rate of 20 °C min?1, and both the reduction of half crystallization time and the increase in peak crystallization temperature also justified that the addition of TMC-300 accelerated the crystallization of iPP.

  相似文献   

4.
The effects of concentrations of N, N’, N”-tris- tert. butyl- 1,3,5- benzene- tricarboxamide (NA) and a hemiacid of dehydroabietic acid (1:1 K) on the optical properties of iPP were compared with each other. It revealed that the NA was an effective transparent nucleating agent for iPP. The NA had advantage at very concentration (0.02 wt%), while the 1:1 K had some advantage at high concentrations (0.3 wt%~0.5 wt%), The optimal concentration range of the NA was 0.1 wt% to 0.4 wt%, while the value for 1:1 K was 0.3 wt% to 0.5 wt%. The absence of detectable spherulites in nucleated iPP was confirmed by SEM and POM. This was an important reason why the nucleated iPPP showed improved optical properties. The results of WAXD showed that preferential growth along the b-axis during crystallization and more disordered structures were formed in the nucleated samples. The results of DSC disclosed increased crystallization peak temperature and melting temperature in the nucleated samples.  相似文献   

5.
A new nematic liquid crystalline polymer as a highly active β-nucleator (LCP-N) of isotactic polypropylene (iPP) was synthesized and characterized. The effect of LCP-N on thermal behavior of the iPP was investigated with differential scanning calorimetry. LCP-N showed a melting transition at 85.0°C and a nematic to isotropic phase transition at 278.0°C. The incorporation of LCP-N could lead to substantial changes in the thermal behavior of the iPP. The nucleating activity of LCP-N mainly depended on its content, mesogenic molecular structure, and thermal history of processing. A high content of β-form could be obtained by the combined effect of the optimum LCP-N concentration and crystallization temperature and time. The Φβ reached 77% when the LCP-N content, crystallization temperature, and crystallization time were 0.4 wt.%, 125°C, and 1 h, respectively.  相似文献   

6.
Nucleating agents with an ≈6.5 Å lattice parameter induced the α phase of isotactic polypropylene (iPP, α‐iPP). A 6.5 Å periodicity is also involved in the nucleating agents for the β phase of iPP (β‐iPP). The similarity in substrate periodicities suggests that some nucleating agents may induce either the α or β phase under different crystallization conditions. 4‐Fluorobenzoic acid, dicyclohexylterephthalamide, and γ‐quinacridone (the latter two are known as β‐iPP nucleators) were tested over a wide range of crystallization temperatures [up to crystallization temperature (Tc) > 145 °C]. The two former nucleating agents induce exclusively α‐iPP and β‐iPP, respectively. γ‐Quinacridone on the contrary is a versatile agent with respect to the crystal phase generated. More specifically, the same crystal face of γ‐quinacridone induces either β‐iPP or α‐iPP when Tc is below or above ≈140 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2504–2515, 2002  相似文献   

7.
Sodium benzoate (SB), a conventional nucleating agent of α‐phase isotactic polypropylene (iPP) was discovered to induce the creation of β‐phase iPP under certain crystalline conditions. Polarized optical microscopy (POM) and wide angle X‐ray diffraction (WAXD) were carried out to verify the versatile nucleating activity of SB and investigate the influences of SB's content, isothermal crystallization temperature, and crystallization time on the formation of β‐phase iPP. The current experimental results indicated that, under isothermal crystallization conditions, SB showed peculiar nucleating characteristics on inducing iPP crystallization which were different from those of the commercial β form nucleating agent (TMB‐5). The content of β crystal form of iPP nucleated with SB (PP/SB) increased initially with the increase of crystallization temperature, nucleating agent (SB) percentage or crystallization time, reached a maximum value, and then decreased as the crystallization temperature, nucleating agent percentage or crystallization time further increased. While the content of β crystal form of iPP nucleated with TMB‐5 (PP/TMB‐5) showed a completely different changing pattern with the crystallization conditions. The obvious difference of the two kinds of nucleating agents on inducing iPP crystallization can be explained by the versatile nucleating ability of SB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1183–1192, 2008  相似文献   

8.
The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene (iPP) were analyzed. It is found that the crystallization temperatures of nucleated iPP were increased by above 11.0°C and the relative contents of β‐crystals (Kβ ) in iPP reached above 0.40 after addition of compound nucleating agents. The Kβ values depend on cooling rate, crystallization temperature in isothermal crystallization, and the difference between the crystallization temperatures of iPP nucleated by two individual nucleating agents. The nonisothermal crystallization kinetics were studied by Caze method and Mo method, respectively. The effective activation energy was calculated by the Friedman's method. The results illustrate that the half crystallization time was shortened and the crystallization rate was increased obviously after addition of nucleating agents, and the effective activation energy was increased with the relative crystallinity.  相似文献   

9.
The nucleating activity of side-chain liquid–crystalline copolymer, as new β-nucleating agent (LCP-NA3), towards isotactic polypropylene (iPP) was investigated by differential scanning calorimetry, wide-angle X-ray diffraction, and polarized optical microscopy. The effect of LCP-NA3 content, crystallization temperature, and time on the phase behavior of the iPP has been discussed. The results indicate that the relative content of β-crystal mainly depends on LCP-NA3 content, crystallization temperature, and time. A high content of β-crystal can be obtained by the combined effect of the optimum LCP-NA3 concentration, crystallization temperature, and time. The maximum content of β-crystal reaches 0.63 when the LCP-NA3 content, crystallization temperature, and time are 0.8 wt%, 130 °C, and 1 h, respectively. In addition, LCP-NA3 is identified to have dual nucleating ability for α- and β-crystals under appropriate kinetic conditions.  相似文献   

10.
Crystallization and melting behaviors of isotactic polypropylene (iPP) nucleated with compound nucleating agents of sodium 2,2′‐methylene‐bis (4,6‐di‐tert‐butylphenyl) phosphate (hereinafter called as NA40)/dicyclohexylterephthalamide (hereinafter called as NABW) (weight ratio of NA40 to NABW is 1:1) were studied by differential scanning calorimetry and wide‐angle X‐ray diffraction (WAXD), the relative β‐amount of iPP nucleated with these compound nucleating agents was also calculated in Turner‐Jones equation by using wide‐angle X‐ray diffraction data. Under isothermal crystallization, there exists a temperature range favorable for formation of β‐iPP. When the concentration of compound nucleating agents is 0.2 wt %, the temperature range is from 100 to 140 °C. While in nonisothermal crystallization, lower cooling rate is favorable for form of β‐iPP and the relative β‐amount of iPP increases with the decreasing of cooling rate in crystallization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 911–916, 2008  相似文献   

11.
The combined nucleation effect of graphene oxide (GO) and calcium pimelate (CaPi) which are chemically compound together (expressed in GO ? CaPi) in isotactic polypropylene (iPP) was investigated. Fourier transform infrared (FTIR), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA) verified that CaPi was chemically compound with GO by chelate bonds. The crystallization behavior and crystalline morphologies of iPP nucleated with different mass ratio of GO and CaPi were investigated. The crystallization peak temperature of iPP nucleated with 0.2 wt% GO ? CaPi with the mass ratio of 1:5 (GO1 ? C5) was increased by 8.3°C when compared with that of pure iPP, and the relative content of β‐crystal reached up to 0.7962. Whereas, the crystallization peak temperature of iPP nucleated with 0.2 wt% GO and CaPi which are blended together by mechanical force (expressed in GO + CaPi) with the mass ratio of 1:5 (GO1 + C5) was only increased by 5.0°C. It was attributed to that the aggregation of GO + CaPi caused the decrease of the crystallization peak temperature, while the GO1 ? C5 uniformly dispersed in the iPP matrix. Unexpectedly, the relative content of β‐crystal of iPP nucleated with 0.02 wt% GO1 ? C5 reached up to 0.8094, and the crystallization peak temperature was increased by 6.7°C compared with that of pure iPP. Meanwhile, the impact strength, tensile strength and heat deflection temperature of iPP nucleated with 0.02 wt% GO1 ? C5 increased by almost 45.86%, 2.03% and 7.7°C, respectively. The iPP nucleated with GO1 ? C5 obtained a balance between stiffness and toughness and the thermo‐mechanical property of nucleated iPP was improved.  相似文献   

12.
Compounds of isotactic polypropylene (iPP) and β‐nucleating agent were used to investigate the relationship between the development of β phase and molecular weight in iPP under quiescent crystallization conditions by using wide angle X‐ray diffraction and differential scanning calorimetry techniques. In all cases, the dependency of the formation of β phase in iPP on molecular weight of iPP at a defined crystallization temperature range was found. The iPP with high molecular weight possessed a wide range of crystallization temperature in inducing rich β phase. However, poor or even no β phase was obtained for the samples with low molecular weight in the same range. In addition, an upper critical crystallization temperature of producing dominant β phase was found at 125 °C. Beyond this temperature, a phenomenon of prevailing α phase became obvious. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1301–1308  相似文献   

13.
Isotactic polypropylene (iPP) modified by heterogeneous nucleation and molten state drawing was investigated using the DMTA and NMR methods. The nucleation was realized by specific α and β nucleating agents, 1,3,2,4-bis(3,4-dimetylobenzylideno) sorbitol (Millad 3988, Miliken) leading to the creation of the α phase, and N,N′-dicyklohexylo-2,6-naftaleno dikarboxy amid (NJ100) as the β phase promoter. The processing induced modification was performed by molten state drawing during an extrusion in the range between the die exit and the calibration unit. An increase of the glass transition temperature of iPP was found to be drawing independent for the β-nucleated samples, and dependent in the case of the α-iPP. Changes in the macromolecular mobility, depending on the α/β iPP structure and molten state drawing, was found by NMR lineshape and second moment measurements.  相似文献   

14.
Linear low-density polyethylene (LLDPE) was grafted onto the backbone chains of isotactic polypropylene (iPP) during reactive melt-extrusion to produce a novel toughening modifier, propylene/ethylene graft copolymer (PEGC), to improve the properties of iPP random(-copolymerized with a small amount of ethylene) (PPR). The crystallization behavior as well as the non-isothermal crystallization kinetics of the PEGC modified PPRs were investigated via differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). The fractured surface topography was characterized using scanning electron microscopy (SEM), and the mechanical properties through notched impact and tensile testing as well as dynamic mechanical thermal analysis (DMTA). The results show that, at a PEGC content of 8 wt%, notched impact strength of the PEGC modified PPR increased by 30.6% at low temperature (−25 °C). As regards crystalline morphology, the PEGC, as an effective heterogeneous nucleating agent, fostered nucleation of the PPR to elevate its crystallization temperature as well as rate of crystallization, thus refining the PPR (iPP) spherulites and improving the interfacial structure between iPP spherulites. The Jeziorny approach was unsatisfactory for simulation of the non-isothermal crystallization process of the PEGC modified PPRs; however, the Mo method described consistently the crystallization kinetics over the entire isothermal process.  相似文献   

15.
In the present work, α‐form nucleating agent 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) is introduced into the blends of polypropylene/ethylene–octene copolymer (PP/POE) blends to study the effect of the nucleating agent on the toughness of PP/POE blends through affecting the crystallization behavior of PP matrix. Compared with the PP/POE blends, in which the toughness of the blends increases gradually with the increasing content of POE and only a weak transition in toughness is observed, addition of 0.2 wt % DMDBS induces not only the definitely brittle‐ductile transition at low POE content but also the enhancement of toughness and tensile strength of the blends simultaneously. Study on the morphologies of impact‐fractured surfaces suggests that the addition of a few amounts of DMDBS increases the degree of plastic deformation of sample during the fracture process. WAXD results suggest that POE induces the formation of the β‐form crystalline of PP; however, DMDBS prevents the formation of it. SEM results show that the addition of DMDBS does not affect the dispersion and phase morphologies of POE particles in PP matrix. DSC and POM results show that, although POE acts as a nucleating agent for PP crystallization and which enhances the crystallization temperature of PP and decreases the spherulites size of PP slightly, DMDBS induces the enhancement of the crystallization temperature of PP and the decrease of spherulites size of PP more greatly. It is concluded that the definitely brittle–ductile transition behavior during the impact process and the great improvement of toughness of the blends are attributed to the sharp decrease of PP spherulites size and their homogeneous distribution obtained by the addition of nucleating agent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 577–588, 2008  相似文献   

16.
The reaction precursors pimelic acid (Pi) and calcium stearate (CaSt) were added in situ during extrusion of isotactic polypropylene (iPP) to generate self-dispersed calcium pimelate (CaPi[IS]). The results reveal that the nucleating agents (NAs) synthesized in situ obviously affected the nucleation effect in iPP. The crystallization, mechanical properties and melting behavior of nucleated iPP were investigated. The crystallization temperature (Tc) of iPP modified with CaPi(IS) increased by 4–5°C when compared to that of pure iPP. Especially, when the addition amount of CaPi(IS) in iPP was 0.30 wt%, the relative β-crystal concentration of iPP/CaPi(IS) reached the highest level of 96.47%, 22.71% higher than that of iPP/CaPi. However, Pi and CaSt has hardly impact on the nucleation effect in iPP. The mechanical properties of iPP show that CaPi and CaPi(IS) have excellent toughening effect on iPP while Pi and CaSt greatly improved the stiffness of iPP. Furthermore, the dispersion of these NAs in iPP was investigated by scanning electronic microscope (SEM). It can be clearly seen that the CaPi(IS) particles are uniformly distributed in the iPP after magnification.  相似文献   

17.
The non-isothermal crystallization kinetics of isotactic polypropylene (iPP) and nucleated iPP was investigated by DSC. The crystalline morphology of iPP was observed by polarized light microscopy. It was found that the crystallization rate increased with the addition of nanometer-scale calcium carbonate (nm-CaCO3) particles. The addition of dibenzylidene sorbitol (DBS) could greatly reduce the spherulite size of iPP. The crystallization temperature for the iPP with DBS was higher than for non-nucleated iPP. DBS was an effective nucleating agent for iPP. The results of measurements suggested that there was a coordinated action to the crystallization of iPP when the organic nucleating agents (DBS) and nm-CaCO3 were added to iPP together. Comparison to the modified Avrami equation and Ozawa equation, another method—Mo’s method can describe the non-isothermal crystallization behavior of iPP and nucleated iPP more satisfactorily.  相似文献   

18.
This article reports crystallization behaviors of isotactic polypropylene (iPP) with an aryl amide derivative (TMB‐5) as β‐form nucleating agent. The effects of nucleating agent concentration, thermal history and assemble morphology of nucleating agent on the crystallization behaviors of iPP were studied by differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy. The results indicated that the TMB‐5 concentration should surpass a threshold value to get products rich in β‐iPP. The diverse morphologies of TMB‐5 are determined by nucleating agent concentration and crystallization condition. At higher concentrations, the recrystallized TMB‐5 aggregates into needle‐like structure, which induces mixed polymorphic phases on the lateral surface and large amount of β modification around the tip. High β nucleation efficiency was obtained at the lowest studied crystallization temperature, which is desirable for real molding process. TMB‐5 prefers to recrystallize from the melt at higher concentration and lower crystallization temperature. The difference in solubility, pertinent to concentration and crystallization temperature, determined the distinct crystallization behaviors of iPP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1725–1733, 2008  相似文献   

19.
The effects of nucleating duality, imposed by a mixed nucleating agent (NA) system containing multi-walled carbon nanotubes (MWCNTs) and a rare earth (WBG), on the crystallization behaviors of isotactic polypropylene (iPP) including the peak temperature of crystallization (T cp), polymorphic composition, and crystalline morphology, were probed in detail by calorimetry, X-ray diffraction, and polarized light microscopy. In such mixed nucleating agent system, MWCNTs is active filler to induce α-nucleation for iPP, while WBG serves as β-nucleating agent. When the WBG content was low (0.05%), the crystals of WBG were as a form of individual isotropic dendrite, and the enhancement of T cp was achieved by the incorporation of MWCNTs. As the WBG content was high as 0.1%, a percolated NA network consisted of needlelike crystals of WBG yielded before nucleating the prevalent crystallization of iPP. In this case, the addition of MWCNTs has no obvious effect on T cp. However, by varying the mass proportion of MWCNTs/WBG, the polymorphic composition was adjusted significantly, indicating a nucleation competition between MWCNTs and WBG. Although the competitive growth existed between α-crystals nucleated by MWCNTs and β-crystals nucleated by WBG, the formation of primary β-crystallite was always prior to the α-nucleated crystallization, as confirmed by crystalline morphology. These findings are useful for developing a new pathway to prepare iPP-based composite with good mechanical property via the addition of mixed nucleating system containing active inorganic filler and β-nucleating agent.  相似文献   

20.
The effects of nematic liquid crystalline polymer as a new β-nucleator (LCP-N) on crystallization structure and morphology of isotactic polypropylene (iPP) were investigated using wide-angle X-ray diffraction and polarized optical microscopy. The experimental results showed that LCP-N could lead to substantial changes in the crystallization structure and morphology of iPP. The nucleating activity of LCP-N mainly depended on its content, mesogenic molecules, and thermal history of processing. A high content of β-form (K β) was obtained by the combined effect of the optimum LCP-N content and crystallization temperature. The maximum K β reached 84% when the LCP-N content and crystallization temperature and time were 0.4 wt.%, 125°C, and 1 h, respectively. In addition, the birefringence of β spherulite was stronger than that of α spherulite; this difference is related to their particular way of growing and lamellar morphology. Due to its particular sheaf-like growth, the β spherulite was brighter and more colorful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号