首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The M‐effect (monochromatization‐effect) is a powerful process which can give high intensity monochromatic spectra with a certain wavelength depending on the type of used gas mixtures to generate the plasma state. The effect consists in the emission of a single spectral line emerging from plasma under specific experimental conditions involving one electropositive gas and one electronegative gas mixture. For example, in the case of Ne‐H2 mixture, a clear monochrome radiation was obtained, corresponding to the λNe =585.3 nm wavelength at 2p1‐1s2 transition in the Paschen notation, the pressures ranging between 10‐100 torr. In this paper we prove the general character of this effect, i.e. if the optical emission spectra (OES) reduced to selective lines can be noticed also in other multiple gas mixture discharges. The Ne‐Ar‐Xe mixture discharges with different percentages of H2 as electronegative gas added in has been investigated. The triple M‐effect, means three specific monochromatic lines, could be revealed in the OES at 50% of H2 addition in Ne‐Ar‐Xe mixture (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this paper the results of studying of the electron temperature of buffer and complex plasmas in mixtures of noble gases (helium + argon) in capacitively coupled radiofrequency (CCRF) discharge are presented. The optical properties of dusty plasma in argon, helium and their mixtures have been studied using optical diagnostic methods. Based on spectral lines of plasma forming gases, the dependence of the electron temperature on gas pressure and discharge power has been determined. The axial distribution of electron temperature in the interelectrode gap has been measured. Measurements have been made using an RF compensated electric probe. The comparison of the experimental results shows that admixture of a small amount of argon to helium leads to a decrease in the electron temperature of buffer plasma. The presence of dust particles in the plasma causes an increase in the electron temperature. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
黏度是能源、动力、化工等系统设计分析中常用的重要物性参数.本文探讨了5种惰性气体(He、Ne、Ar、Kr、Xe)气相和超临界黏度的计算,以实际气体与同温度稀薄气体的黏度之比作为无量纲对比黏度,发现5种惰性气体的无量纲对比黏度与剩余熵之间满足同一单值函数关系,据此建立了惰性气体的气相和超临界黏度模型,其中稀薄气体黏度关联...  相似文献   

4.
胡素兴  傅恩生 《光学学报》1996,16(5):77-583
在考虑平面型摆动器(Wiggler)场误差△B(z)的情况下,求解电子在磁场中运动的洛仑兹(Lotentz)方程,得到场误差对电子横向速度的改变,然后作傅里叶变换即为电子自发辐射谱的改变,并讨论了各种场误差对自由电子激光器自发辐射谱的影响,选择北京自由电子激光器(BFEL)参数,进行模拟,最后确定出各种场误差的可接受条件。  相似文献   

5.
The effects of self fields on gain for a free‐electron lasers (FELs) with electromagnetic‐wave wiggler and an axial guide magnetic field is presented. The relativistic equation of motion for a single electron for all relevant fields, including wiggler, self‐fields and axial guide magnetic field has been solved. Two classes of possible single‐particle trajectories in this configuration are found. Result of the numerical calculation shown that the relativistic part of group I (group II) orbits decreases (increases) monotonically with the axial field. The gain equations for the FEL configuration by adding the effect of self‐fields have been derived. The numerical calculation has been employed to analysis the gain induced by the effects of the self‐fields. It is shown that, for group I orbits the gain decreases in the presence of self‐fields and the gain decrement increases with increasing axial guide magnetic field, while for group II orbits the self‐fields enhances the gain. The gain decrement and enhancement are due to diamagnetic and paramagnetic effects of the self‐magnetic field, respectively. The comparison of the gain for electromagnetic‐wave wiggler with the gain in helical wiggler has been done (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper, we report presence of various organic products formed in a flowing atmospheric glow discharge fed by gas mixture containing 1‐5 % of methane in nitrogen, which mimics the Titan's atmosphere. Gaseous products from the discharge exhaust were analysed by Gas Chromatography with Mass Spectrometry (GC‐MS). The experimental results revealed C2H2, HCN, and CH3CN as the major products. Various hydrocarbons and nitriles were the other determined gaseous products. Whilst many of these compounds have been predicted and/or observed in the Titan atmosphere, the present plasma experiments provide evidence of both the chemical complexity of Titan atmospheric processes and the mechanisms by which larger species grow prior to form the dust that should cover much of the Titan's surface. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Free‐electron lasers (FELs) generate femtosecond XUV and X‐ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.  相似文献   

8.
9.
The free electron gas in a uniform magnetic field at low temperature is restudied. The grand partition function previously obtained by Landau's quantitative calculation contains three parts, which are all approximate. An improved calculation is presented, in which two of the three parts are obtained in exact forms. A simple remedy for Landau and Lifshitz's qualitative calculation in the textbook is also given, which turns the qualitative result into the same one as obtained by the improved quantitative calculation. The chemical potential is solved approximately and the thermodynamic quantities are caiculated explicitly in both a weak field and a strong field. The thermodynamic quantities in a strong field obtained here contain both non-oscillating and oscillating corrections to the corresponding results derived from Landau's grand partition function. In particular, Landau's grand partition function is not sufficiently accurate to yield our nonzero results for the specific heat and the entropy. An error in the Laplace-transform method for the problem is corrected. The results previously obtained by this method are also improved.  相似文献   

10.
11.
The electrical conductivity of noble gas plasmas is investigated by using the relaxation‐time approximation in the density range 10–5–10 g cm–3 and temperature range 104–105 K. The electrical conductivity calculated shows reasonable consistency with shock wave experiments and theoretical simulations at above 2 × 104 K where the Coulomb interaction dominates. A nonmetal to metal transition in helium plasma is predicted at 2.4 g cm–3 and shown reasonable agreement with the most recent shock wave experiment (above 1.9 g cm–3). Furthermore, the insulator‐metal transition densities of all the noble gas plasmas are predicted and compared with available results (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
In terms of single-atom induced dipole moment by Lewenstein model, we present the macroscopic high-order harmonic generation from mixed He and Ne gases with different mixture ratios by solving three-dimensional Maxwell's equation of harmonic field. And then we show the validity of mixture formulation by Wagner et al. [Phys. Rev. A 76 (2007) 061403(R)] in macroscopic response level. Finally, using/east squares fitting we retrieve the electron return time of short trajectory by formulation in Kanai et al. [Phys. Rev. Lett. 98 (2007) 153904] when the gas jet is put after the laser focus.  相似文献   

14.
Simultaneous scattering invisibility and free‐space field enhancement have been achieved based on multipolar interferences among all‐dielectric nanoparticles. The scattering properties of all‐dielectric nanowire quadrumers are investigated and two sorts of scattering invisibilities have been identified: the trivial invisibility where the individual nanowires are not effectively excited; and the nontrivial invisibility with strong multipolar excitations within each nanowire, which results in free‐space field enhancement outside the particles. It is revealed that such nontrivial invisibility originates from not only the simultaneous excitations of both electric and magnetic resonances, but also their significant magnetoelectric cross‐interactions. We further show that the invisibility obtained is both polarization and direction selective, which can probably play a significant role in various applications including non‐invasive detection, sensing, and non‐disturbing medical diagnosis with high sensitivity and precision.  相似文献   

15.
The design and the commissioning results of a portable and compact spectrometer for the high harmonics content characterization of the extreme‐ultraviolet radiation of FLASH (free‐electron laser in DESY, Hamburg, Germany) are presented. The instrument is a grazing‐incidence flat‐field spectrometer equipped with two variable‐line‐spaced gratings; it covers the 2–40 nm wavelength region with a spectral resolution in the 0.1–0.2% range. Both spectral and intensity fluctuations of the fundamental emission and the harmonics are monitored.  相似文献   

16.
Due to the broad scattering spectral profiles, localized surface plasmon resonances (LSPRs) of Pd nanoparticles have low resolution and limited sensitivity for hydrogen detection. In this work, we use a simple light‐irradiation method to demonstrate that free‐space light can be efficiently coupled into and from the microfiber whispering‐gallery modes (WGMs) by the Pd nanoantennas. The nanoantenna–microfiber cavity system provides strong intermodal coupling between LSPRs and WGMs, and induces significant modulation of the scattering spectra. A measured full width at half‐maximum of 3.2 nm at 622.7 nm is obtained, which is the narrowest in Pd nanoparticle‐based LSPR structures reported up to now. The ultranarrow resonances offer enhanced sensitivity to hydrogen gas detection with a figure of merit reaching ∼2.22. Other advantages of the Pd nanoantenna–microfiber cavity system including independence of precise alignment of excitation light, large tunability of the resonant wavelengths, easy and low‐cost fabrication of the system, have also been demonstrated.

  相似文献   


17.
The propagation within a one‐dimensional photonic crystal of a single ultra‐short and ultra‐intense pulse delivered by an X‐ray free‐electron laser is analysed with the framework of the time‐dependent coupled‐wave theory in non‐linear media. It is shown that the reflection and the transmission of an ultra‐short pulse present a transient period conditioned by the extinction length and also the thickness of the structure for transmission. For ultra‐intense pulses, non‐linear effects are expected: they could give rise to numerous phenomena, bi‐stability, self‐induced transparency, gap solitons, switching, etc., which have been previously shown in the optical domain.  相似文献   

18.
The nonlinear scattering of a laser pulse off spherical nanoclusters with free electrons and with a diffuse surface is examined in the collisionless hydrodynamics approximation in the framework of perturbation theory with respect to the laser pulse intensity, as well as of the steady‐state approximation. In a previous publication [S.V. Fomichev and W. Becker, Phys. Rev. A 81 , 063201 (2010)] we reported the full nonlinear hydrodynamic model of forced collective electron motion confined to a cluster with diffuse surface and introduced two different perturbation theories corresponding to different laser intensity regimes. In the current paper, in the framework of this hydrodynamic model we focus on the properties of plasmon resonance‐enhanced third‐harmonic generation in a spherical cluster and its dependence on the shape of its diffuse surface whose role increases for nonlinear processes. At the same time, the quadrupole second‐harmonic generation in a spherical cluster is also inspected as a necessary intermediate step. Both cold metal clusters in vacuum or in a dielectric surrounding and hot laser‐heated and laser‐ionized clusters are considered within the same approach for a wide range of the fundamental laser frequency. Nonlinear laser excitation of the dipole plasmon Mie resonance in spherical clusters, as well as of other respective multipole plasmon resonances is investigated analytically and numerically in detail (position, width, and strength) versus the cluster‐surface diffuseness, the outer ionization degree in charged clusters, the electron‐density diffuseness, and their interplay. Under certain conditions, depending on the various cluster parameters, different secondary nonlinear resonances are found. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
With the successful operation of free‐electron lasers (FELs) as user facilities there has been a growing demand for experiments with two photon pulses with variable photon energy and time separation. A configuration of an undulator with variable‐gap control and a delaying chicane in the middle of the beamline is proposed. An injected electron beam with a transverse tilt will only yield FEL radiation for the parts which are close to the undulator axis. This allows, after re‐aligning and delaying the electron beam, a different part of the bunch to be used to produce a second FEL pulse. This method offers independent control in photon energy and delay. For the parameters of the soft X‐ray beamline Athos at the SwissFEL facility the photon energy tuning range is a factor of five with an adjustable delay between the two pulses from ?50 to 950 fs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号