首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 4 毫秒
1.
The Hubbard model is a prototype for strongly correlated electrons in condensed matter, for molecules and fermions or bosons in optical lattices. While the equilibrium properties of these systems have been studied in detail, the excitation and relaxation dynamics following a perturbation of the system are only poorly explored. Here, we present results for the dynamics of electrons following nonlinear strong excitation that are based on a nonequilibrium Green functions approach. We focus on small systems—“Hubbard nano‐clusters”—that contain just a few particles where, in addition to the correlation effects, finite size effects and spatial inhomegeneity can be studied systematically. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Functional Integrals and Excitation Energy in Three-Band Hubbard Model   总被引:1,自引:0,他引:1  
YAN Jun 《理论物理通讯》2008,49(3):567-570
The normal and anomalous Green's functions of antiferromagnetie state in three-band Hubbard model are studied by using functional integrals and temperature Green's function method. The equations of energy spectrum are derived. In addition, excitation energy of Fermi fields are calculated under long wave approximation.  相似文献   

3.
We study the electron spectral function of the antiferromagnetically ordered phase of the three dimensional Hubbard model, using recently formulated low‐energy theory based on the 2D half‐filled Hubbard model which describes both collective spin and charge fluctuations for arbitrary value of the Coulomb repulsion U. The model then is solved by a saddle‐point approximation within the CP1 representation for the Neel field. The single‐particle properties are obtained by writing the fermion field in terms of a U(1) phase, Schwinger boson SU(2) fields and a pseudofermion variables. We demonstrate that the appearance of a sharp peak in the electron spectral function in the antiferromagnetic state points to the emergence of the bosonic mode, which is associated with spin ordering.  相似文献   

4.
5.
In this paper, we study the phenomena of collapse and anomalous diffusion in shared mobility systems. In particular, we focus on a fleet of vehicles moving through a stations network and analyse the effect of self-journeys in system stability, using a mathematical simplex under stochastic flows. With a birth-death process approach, we find analytical upper bounds for random walk and we monitor how the system collapses by super diffusing under different randomization conditions. Using the multi-scale entropy metric, we show that real data from a bike-sharing fleet in the city of Salamanca (Spain) present a complex behaviour with more of a 1/f signal than a disorganized system with a white noise signal.  相似文献   

6.
In this work, the binding energy and wavefunctions of three-nucleon systems are obtained by using hy-perspherical harmonic approach. We have used a mathematical modification method to obtain the eigenvalues and eigenfunctions of Schrdinger equation for three-nucleon systems in calculation. Next, we have used a simple approach to obtain the difference between binding energy of 3H and 3He where gives us mass splitting of three-nucleon systems. We have compared our results with the other works and experimental values.  相似文献   

7.
In this work, the binding energy and wavefunctions of three-nucleon systems are obtained by using hyperspherical harmonic approach. We have used a mathematical modification method to obtain the eigenvalues and eigenfunctions of Schrödinger equation for three-nucleon systems in calculation. Next, we have used a simple approach to obtain the difference between binding energy of 3H and 3He where gives us mass splitting of three-nucleon systems. We have compared our results with the other works and experimental values.  相似文献   

8.
Diffusion of moving particles in stationary disordered media is studied using a phenomenological mode-coupling theory. The presence of disorder leads to a generalized diffusion equation, with memory kernels having power law long time tails. The velocity autocorrelation function is found to decay like t–(d/2+1), while the time correlation function associated with the super-Burnett coefficient decays liket –d/2 for long times. The theory is applicable to a wide variety of dynamical and stochastic systems including the Lorentz gas and hopping models. We find new, general expressions for the coefficients of the long time tails which agree with previous results for exactly solvable hopping models and with the low-density results obtained for the Lorentz gas. Finally we mention that if the moving particles are charged, then the long time tails imply that there is an d/2 contribution to the low-frequency part of the frequency-dependent electrical conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号