首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The “click” chemistry, Cu(I)-catalyzed azide–alkyne cycloaddition reaction, was applied to covalently functionalize the poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer film with an excellent electron transfer mediator (ferrocene). Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy were used to characterize the ferrocene-grafted PEDOT conducting polymer film, and it was proved that the grafting procedure via click reaction had a high efficiency. The ferrocene groups covalently grafted in the polymer films turned out to own a relatively fast electron transfer rate and show multi-color states via adjusting applied potential.  相似文献   

2.
卢丽敏  徐景坤 《高分子科学》2014,32(8):1019-1031
A novel graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene)(PEDOT-MeOH/GO) composite film was synthesized and utilized as an efficient electrode material for simultaneous detection of rutin and ascorbic acid(AA). PEDOT-MeOH/GO films were synthesized on glassy carbon electrode(GCE) by a facile one-step electrochemical approach and were characterized by scanning electron microscopy, UV-Vis spectroscopy, FTIR spectra and electrochemical methods. Then the PEDOT-MeOH/GO/GCE was applied successfully in the simultaneous detection of rutin and AA. The results showed that the oxidation peak currents of rutin and AA obtained at the PEDOT-MeOH/GO/GCE were much higher than those at the traditional conducting polymer PEDOT/GO/GCE, PEDOT-MeOH/GCE, PEDOT/GCE and bare GCE. Under optimized conditions, the linear ranges for rutin and AA are 20 nmol/L-10 μmol/L and 8 μmol/L-1 mmol/L, respectively. The detection limit is 6 nmol/L for rutin and 2 μmol/L for AA(S/N = 3), which are lower than those of the reported electrochemical sensors.  相似文献   

3.
Exfoliated nanocomposites formed by poly(3,4-ethylenedioxythiophene) and different concentrations of non-modified montmorillonite (bentonite), which range from 1% to 10% w/w, have been prepared by anodic electropolymerization in aqueous solution. Analyses of the electrochemical and electrical properties reveal that the electroactivity of the nanocomposites is higher than that of the individual homopolymer, while the electrical conductivity of the two systems is practically identical. On the other hand, the exfoliated distribution of the clay in the polymeric matrix and the morphology of the prepared materials have been characterized using transmission electron microscopy, X-ray diffraction and atomic force microscopy. The overall of the results represents a significant improvement with respect to other nanocomposites constituted by conducting polymers and clays, including those involving poly(3,4-ethylenedioxythiophene), and evidences the reliability of the preparation procedure employed in this work.  相似文献   

4.
Cell adhesion and proliferation in poly(3,4-ethylenedioxythiophene), an electroactive polythiophene derivative generated by anodic polymerization, has been investigated. Results show that epithelial cells Hep-2 present significant activity on the surface of poly(3,4-ethylenedioxythiophene) electrodeposited on stainless steel electrodes, no sign of cytotoxicity being detected for this conducting polymer. Indeed, seeded and cultured cells bound better to poly(3,4-ethylenedioxythiophene) than to uncoated stainless steel, the latter substrate being used as a control. Furthermore, the electrochemical characteristics of poly(3,4-ethylenedioxythiophene) covered with cells was determined in different biological media using cyclic voltammetry experiments. Results reveal a significant increase in the electroactivity of this material when it is covered with a cellular monolayer. The overall of the results evidences not only the biocompatibility of poly(3,4-ethylenedioxythiophene) with Hep-2 cells but also their electrocompatibility.  相似文献   

5.
杜然  张学同 《物理化学学报》2012,28(10):2305-2314
通过氧化偶联聚合方法成功地制备出一种基于烷氧磺酸盐功能化的聚乙撑二氧噻吩水凝胶, 揭示了零维单体胶束向二维纳米片层及三维水凝胶的转变过程, 发现通过改变反应温度或初始单体浓度, 可以诱导水凝胶网络结构单元的维度变化, 即由零维纳米粒子向二维纳米片层进行转化. 提出了一种导电高分子水凝胶的合成方法, 即采用一种氧化剂与一种多价金属盐的混合物作为引发剂, 其中前者用于诱导单体聚合, 后者则充当离子交联试剂, 并发现可以通过引入不同金属离子来改变凝胶的形貌. 此外, 导电高分子水凝胶具有良好的电化学电容, 并具有选择性吸附与可控脱附某些染料分子的特性.  相似文献   

6.
A new and efficient synthetic route to hydroxymethylated-3,4-ethylenedioxylthiophene(EDOT-MeOH) was developed by a simple four-step sequence,and its global yield was approximately 41.06%.The poly(hydroxymethylated-3, 4-ethylenedioxylthiophene)(PEDOT-MeOH) film was electrosynthesized in aqueous sodium dodecylsulfate micellar solutions and characterized by different methods.The EDOT-MeOH possessed better water solubility,and lower onset oxidation potential than EDOT.The as-obtained PEDOT-MeOH film displayed good reversible redox activity,stability and capacitance properties in a monomer-free electrolyte,especially the good solubility of PEDOT-MeOH film in strong polar organic solvents such as dimethyl sulfoxide and tetrahydrofuran created a potential application in many different fields. Fluorescent spectra indicated that PEDOT-MeOH was a yellow-green-light-emitter with maximum emission at 568 nm.The as-formed PEDOT-MeOH film had good biocompatibility and was used for fabricating the electrochemical vitamin C biosensor.The proposed biosensor showed a linear range of 3×10-6 mol/L to 1.2×10-2 mol/L with the detection limit of 1μmol/L,a sensitivity of 95.6μA(mmol/L)-1 cm-2,and a current response time less than 10 s and a fairly good stability (The relative standard deviation was 0.43%for 20 successive assays,the proposed biosensor still retained 93.5%of bioactivity after 15 days storage.This result indicated that the prepared PEDOT-MeOH film as immobilization matrix of biologically-active species could be a promising candidate for the design and application of biosensor.  相似文献   

7.
Multilayered films formed by 3, 5 and 7 alternated layers of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole) have been prepared by chronoamperometry under a constant potential of 1.4 V using a layer-by-layer electrodeposition technique. In order to examine influence of the interface:bulk dimensional ratio, the thickness of the yielded films was reduced from the submicrometric to the nanometric scale by decreasing the polymerization time of each layer from 100 s to 10 s. The electroactivity, electrochemical characteristics and morphologies of the resulting multilayered films have been compared with those obtained for both single-component poly(3,4-ethylenedioxythiophene) films prepared using identical experimental conditions and previously reported multilayered films with thickness within the micrometric scale [Estrany F, Aradilla D, Oliver R, Alemán C. Eur Polym J 2007;43:1876].  相似文献   

8.
The electrochemistry of poly(3,4-ethylenedioxythiophene) (PEDOT) was studied in two ionic liquids with bulky organic anions, i.e., 1-butyl-3-methylimidazolium (BMIM) diethylene glycol monomethyl ether sulfate (MDEGSO4) and BMIM octyl sulfate (OctSO4). BMIM-MDEGSO4 is a liquid, while BMIM-OctSO4 is in solid form at room temperature. Electrosynthesis of PEDOT in BMIM-MDEGSO4 with an EDOT concentration of 0.1 M and in BMIM-MDEGSO4/EDOT 1/1 (w/w) solution resulted in no polymer at all or a very limited amount of polymer on the electrode surface, as determined by cyclic voltammetry in 0.1 M KCl(aq) solution. In contrast, electrosynthesis of PEDOT in BMIM-OctSO4/EDOT 1/1 (w/w) resulted in a high yield of electroactive material on the electrode surface. Furthermore, electrosynthesis of PEDOT in ionic liquid–water solution (Cionic liquid=1.5 M) containing 0.1 M EDOT was also found to give a relatively high yield of electroactive material on the electrode surface, both for 1.5 M BMIM-MDEGSO4(aq) and 1.5 M BMIM-OctSO4(aq). The PEDOT electrodes showed an anionic potentiometric response in 10–5–10–1 M KCl(aq) solution, indicating a predominant anion transfer at the polymer–solution interface despite the relatively bulky anions (MDEGSO4 or OctSO4) incorporated as counterions in PEDOT during electropolymerization. On the basis of electrochemical impedance spectroscopy, the charge (ion) transport properties of the polymer film were strongly influenced by the water content of the ionic liquid (Cionic liquid=0.05–2.0 M).Dedicated to Zbigniew Galus on the occasion of his 70th birthday  相似文献   

9.
Efficient post-functionalization of conductive polymer films was achieved by Cu(+)-catalyzed "click"-cycloaddition of novel poly(azidomethyl-EDOT) and various functionalized terminal alkynes under mild heterogeneous conditions with high conversion efficiencies.  相似文献   

10.
Oh Seok Kwon  O. Young Kweon 《Talanta》2010,82(4):1338-1526
Poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) flexible membrane was successfully fabricated by vapor deposition polymerization (VDP) mediated electrospinning for ammonia gas detection. PVA nanofibers (NFs) were electrospun as a core part and polyvinyl alcohol (PVA)/PEDOT coaxial nanocables (NCs) were prepared by VDP method via EDOT monomer adsorption onto the electrospun PVA NFs as templates. To obtain the PEDOT NTs membrane, the PVA NFs were removed from PVA/PEDOT coaxial NCs with distilled water. PVA/PEDOT coaxial NCs and PEDOT NTs had the conductivities of 71 and 61 S cm−1 and were applied as a transducer for ammonia gas detection in the range of 1-100 parts per million (ppm) of NH3 gas. They exhibited the minimum detectable level of ca. 5 parts per million (ppm) and fast response time (less than 1 s) towards ammonia gas. In a recovery time, the PEDOT NTs membrane sensor was ca. 30 s and shorter compared to that of the membrane sensor based on the PVA/PEDOT NCs (ca. 50 s). In addition, sensor performance of PEDOT NTs membrane was also undertaken as a function of membrane thickness. Thick membrane sensor (30 μm) had the enhanced sensitivity and the sensitivity on the membrane thickness was in the order of 30 μm > 20 μm > 10 μm at 60 ppm of NH3 gas.  相似文献   

11.
Detection of dopamine (DA) in the presence of excess of ascorbic acid (AA) has been demonstrated using a conducting polymer matrix, poly (3,4-ethylenedioxythiophene) (PEDOT) film in neutral buffer (PBS 7.4) solution. The PEDOT film was deposited on a glassy carbon electrode by electropolymerization of EDOT from acetonitrile solution. Atomic force microscopy studies revealed that the electrodeposited film was found to be approximately 100 nm thick with a roughness factor of 2.6 nm. Voltammetric studies have shown catalytic oxidation of DA and AA on PEDOT modified electrode and can afford a peak potential separation of ∼0.2 V. It is speculated that the cationic PEDOT film interacts with the negatively charged ascorbate anion through favorable electrostatic interaction, which results in pre-concentration at a less anodic value. The positively charged DA tends to interact with the hydrophobic regions of PEDOT film through hydrophobic–hydrophobic interaction thus resulting in favorable adsorption on the polymer matrix. Further enhancement in sensitivity to micro molar level oxidation current for DA/AA oxidation was achieved by square wave voltammetry (SWV) which can detect DA at its low concentration of 1 μM in the presence of 1000 times higher concentration of AA (1 mM). Thus the PEDOT modified electrode exhibited a stable and sensitive response to DA in the presence of AA interference.  相似文献   

12.
聚-3,4-乙烯二氧噻吩导电聚合物纳米粒子的制备及性能   总被引:1,自引:0,他引:1  
采用反向胶束合成法, 以二乙基磺基琥珀酸钠(AOT)形成的反胶束为模板制备了导电聚合物聚-3,4-乙烯二氧噻吩(PEDOT)纳米粒子. 用紫外-可见-近红外光谱、红外光谱、X射线光电子能谱、扫描电子显微镜及透射电镜等手段对PEDOT粒子进行了表征. 研究了纳米粒子的导电性能并采用石英微天平(QCM)对纳米粒子的气敏特性进行了分析, 对相应导电机理及气体敏感机理进行了讨论.  相似文献   

13.
The possibility to functionalize polymers after a successful polymerization process is often an important challenge in macromolecular science. Herein, modified electrodes based on azide-containing potentiodynamically electropolymerized PEDOT derivatives are reported. This reactive coatings are subsequently modified under mild heterogeneous conditions by copper-catalyzed Huisgen 1,3-dipolar cycloaddition with terminal alkynes, the so-called ‘click’-reaction. A series of terminal alkynes have been successfully used for the facile immobilization of neutral, electron-accepting and electron-donating units to the conducting PEDOT with high conversion efficiencies showing the broad scope of the strategy. The route is devoid of the limitations generated by the various steric and electronic impacts of the substituents when attached to the monomer before polymerization.  相似文献   

14.
The voltammetric responses on selected white wines of different vintages and origins have been systematically collected by three different modified electrodes, in order to check their effectiveness in performing blind analysis of similar matrices. The electrode modifiers consist of a conducting polymer, namely poly(3,4-ethylenedioxythiophene) (PEDOT) and of composite materials of Au and Pt nanoparticles embedded in a PEDOT layer. Wine samples have been tested, without any prior treatments, with differential pulse voltammetry technique. The subsequent chemometric analysis has been carried out both separately on the signals of each sensor, and on the signals of two or even three sensors as a unique set of data, in order to check the possible complementarity of the information brought by the different electrodes. After a preliminary inspection by principal component analysis, classification models have been built and validated by partial least squares-discriminant analysis. The discriminant capability has been evaluated in terms of sensitivity and specificity of classification; in all cases quite good results have been obtained.  相似文献   

15.
Two conducting polymers, poly(pyrrole) (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) were used as immobilization matrices for cholesterol oxidase (ChOx). The amperometric responses of the enzyme electrodes were measured by monitoring oxidation current of H2O2 at +0.7 V in the absence of a mediator. Kinetic parameters, such as K m and I max, operational and storage stabilities, effects of pH and temperature were determined for both entrapment supports. K m values are found as 7.9 and 1.3 mM for PPy and PEDOT enzyme electrodes, respectively; it can be interpreted that ChOx immobilized in PEDOT shows higher affinity towards the substrate.  相似文献   

16.
Potentiometric ion sensors have been prepared by galvanostatic electrosynthesis of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with p-sulfonated calix[4]arene (C[4]S) and p-methylsulfonated calix[4]resorcarenes (Rn[4]S) with alkyl substituents of different chain length (R1=CH3; R2=C2H5; R3=C6H13). The bowl-shape of these doping ions makes them suitable as ionic recognition sites, and their bulky character is expected to prevent them from leaching out of the conducting polymer membrane. For comparison, sensors based on PEDOT doped with poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS) were also constructed. The resulting GC/PEDOT electrodes were conditioned in 0.01 mol L–1 AgNO3 and their performance as Ag+ ion-selective electrodes (ISEs) studied. Results reveal that selectivity and lifetime of the electrodes is affected by the doping anion structure, although all electrodes show selectivity towards Ag+ ions. Interaction of Ag+ with sulfur atoms present in the conducting polymer backbone is considered to be the main reason for this behavior. A second set of electrodes was constructed and conditioned in 0.1 mol L–1 KCl. These electrodes were tested in chloride solutions of quaternary ammonium cations, showing that C[4]S and R2[4]S exhibit significant sensitivity towards pyridinium.Dedicated to Professor György Horányi on the occasion of his 70th birthday in recognition of his outstanding contributions to electrochemistry  相似文献   

17.
Electrochemical deposition of molybdenum oxides from molybdate-containing solutions onto glassy carbon electrodes and the same electrodes coated with a film of poly(3,4-ethylenedioxythiophene) conducting polymer was studied. The morphology of the deposited molybdenum oxides was examined by scanning electron microscopy. The method of X-ray photoelectron spectroscopy was used to determine the state of molybdenum in surface molybdenum oxides and a conclusion was made that the oxide MoO2 is mostly present.  相似文献   

18.
The thermal stability study of a conducting semi-IPN has been reported. The thermo-oxidation of poly(ethylene oxide) (PEO)/poly(3,4-ethylenedioxythiophene) (PEDOT) semi-Interpenetrating Polymer Network (semi-IPN) was studied at 80 °C in open air. The degradation was followed by spectrophotometry in the visible and near infrared range, cyclic voltamperometry and thermogravimetric analysis. Fluorescence spectrophotometry allowed for the identification of OH by-product originated in the PEO network degradation by the use of a chemiluminescent probe, typically terephthalic acid. The formation of hydroxyl radicals damaged the PEDOT chains as checked by infrared spectroscopy. The mechanism of degradation is further confirmed (i) by introducing a radical scavenger or (ii) by performing a thermal ageing under inert atmosphere; in both cases the semi-IPN life-time is tremendously increased.  相似文献   

19.
This article explores the feasibility of poly(pentafluorophenyl methacrylate) (PPFMA) prepared by reversible addition fragmentation chain transfer (RAFT) polymerization as a platform for the preparation of diverse libraries of functional polymers via postpolymerization modification with primary amines. Experiments with a broad range of functional amines and PPFMA precursors of different molecular weights indicated that the postpolymerization modification reaction proceeds with good to excellent conversion for a diverse variety of functional amines and is essentially independent of the PPFMA precursor molecular weight. The RAFT end group, which was well preserved throughout the polymerization, is cleaved during postpolymerization modification to generate a thiol end group that provides possibilities for further orthogonal chain‐end modification reactions. The degree of postpolymerization modification can be controlled by varying the relative amount of primary amine that is used and random polymethacrylamide copolymers can be prepared via a one‐pot/two‐step sequential addition procedure. Cytotoxicity experiments revealed that the postpolymerization modification strategy does not lead to any additional toxicity compared with the corresponding polymer obtained via direct polymerization, which makes this approach also of interest for the synthesis of biologically active polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4332–4345, 2009  相似文献   

20.
Poly(tetrafluoroethylene) (PTFE) films were surface modified in a solution of benzophenone and sodium hydride in dry dimethylformamide by ultraviolet (UV) light irradiation. The extent of surface modification was characterized after durations of UV light irradiation from 5–20 min at temperatures from 19–60°C. The modified films were analyzed by electron spectroscopy for chemical analysis, diffuse reflectance ultraviolet-visible light spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, dynamic contact angle measurement, and low-voltage scanning electron microscopy. PTFE surfaces produced by this modification demonstrated extensive defluorination, oxygen incorporation, surface unsaturation, and reduction in both advancing and receding dynamic water contact angles in a manner that was more extensive at long durations of irradiation and at high temperatures. Morphological damage depended upon treatment conditions, but extensive surface modification could be obtained without substantial morphological damage to PTFE films. Control experiments indicated that the surface modification proceeded by photoexcitation of either diphenyl ketyl radical anion or benzhydrol anion, the products of reaction of benzophenone with sodium hydride. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1499–1514, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号