首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We first study the Shannon information entropies of constant total length multiple quantum well systems and then explore the effects of the number of wells and confining potential depth on position and momentum information entropy density as well as the corresponding Shannon entropy.We find that for small full width at half maximum(FWHM) of the position entropy density,the FWHM of the momentum entropy density is large and vice versa.By increasing the confined potential depth,the FWHM of the position entropy density decreases while the FWHM of the momentum entropy density increases.By increasing the potential depth,the frequency of the position entropy density oscillation within the quantum barrier decreases while that of the position entropy density oscillation within the quantum well increases.By increasing the number of wells,the frequency of the position entropy density oscillation decreases inside the barriers while it increases inside the quantum well.As an example,we might localize the ground state as well as the position entropy densities of the1 st,2 nd,and 6 th excited states for a four-well quantum system.Also,we verify the Bialynicki–Birula–Mycieslki(BBM)inequality.  相似文献   

2.
The Shannon information entropy for the Schrodinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position Sx and momentum S p information entropies for six low-lying states are calculated. We notice that the Sx decreases with the increasing mass barrier width a and becomes negative beyond a particular width a,while the Sp first increases with a and then decreases with it. The negative Sx exists for the probability densities that are highly localized. We find that the probability density ρ(x) for n = 1, 3, 5 are greater than 1 at position x = 0. Some interesting features of the information entropy densities ρs(x) and ρs(p) are demonstrated. The Bialynicki–Birula–Mycielski(BBM)inequality is also tested for these states and found to hold.  相似文献   

3.
In this work we study the quantum system with the symmetric Konwent potential and show how to find its exact solutions. We find that the solutions are given by the confluent Heun function. The eigenvalues have to be calculated numerically because series expansion method does not work due to the variable z ≥ 1. The properties of the wave functions depending on the potential parameter A are illustrated for given potential parameters V_0 and a. The wave functions are shrunk towards the origin with the increasing |A|. In particular, the amplitude of wave function of the second excited state moves towards the origin when the positive parameter A decreases. We notice that the energy levels ε_i increase with the increasing potential parameter |A| ≥ 1, but the variation of the energy levels becomes complicated for |A| ∈(0, 1), which possesses a double well. It is seen that the energy levels ε_i increase with |A| for the parameter interval A ∈(-1, 0), while they decrease with |A| for the parameter interval A ∈(0, 1).  相似文献   

4.
The momentum representation of the Morse potential is presented analytically by hypergeometric function. The properties with respect to the momentum p and potential parameter β are studied. Note that | Ψ(p) | is a nodeless function and the mutual orthogonality of functions is ensured by the phase functions arg[Ψ(p)]. It is interesting to see that the | Ψ(p) | is symmetric with respect to the axis p = 0 and the number of wave crest of | Ψ(p) | is equal to n + 1. We also study the variation of | Ψ(p) | with respect to β. The amplitude of | Ψ(p) | first increases with the quantum number n and then deceases. Finally, we notice that the discontinuity in phase occurs at some points of the momentum p and the position and momentum probability densities are symmetric with respect to their arguments.  相似文献   

5.
In this work, we determine the Fisher and Shannon entropies, the expectation values and the squeeze state for a noncentral inversely quadratic plus exponential Mie-type potential analytically.The proposed potential is solved under the Schr?dinger equation using a special Greene Aldrich approximation to the centrifugal term to obtain a normalised wave function within the framework of the Nikiforov–Uvarov method. Numerical results are obtained for different screening parameters:α?=?0.1, 0.12 and 0.13 for varying real constant parameter(B). The numerical solutions are obtained only for ground state. The numerical results of Fisher entropy both for position and momentum spaces are in good agreement with existing literature. The normalisation constant, wave function, and probability density plots are carried out using a well designed Mathematica algorithm.The Fourier transform of position space entropy gives the momentum space entropy.  相似文献   

6.
With the Dyson-Schwinger equation formalism at finite chemical potential, we study the density dependence of the mass and decay constant of pion in nuclear matter. The calculated results indicate that both the mass and the decay constant remain almost constant at small chemical potential. As the chemical potential gets quite large, the decay constant increases and the mass decreases with the increasing of the chemical potential, and both of them vanish suddenly as a critical value is reached.  相似文献   

7.
The acoustic field in a cased hole is studied through numerical modeling by combining experiment measurement when the first and scond interfaces are bonded well.The effects of the density of the cement,the diameter and thickness of the steel pipe on the amplitude of casing arrival(ACA) are investigated,and a part of the numerical results are compared with the experimental results.These results show that the ACA decreases with the increasing density of the cement.There exists a large difference between the ACAs for the low-and normal-density cements.Therefore,the different standard should be taken in the bonding evaluation for cements with different densities.As the thickness of the steel pipe increases while its diameter keeps as a constant,the arrival time of the casing wave remains unvaried,while the ACA increases. But,when the diameter of the pipe with a constant thickness increases,the arrival time of the casing wave is delayed,and the ACA decreases.As for three kinds of the steel pipe commonly used in oilfields,the relative amplitude of the casing arrival is larger in the big pipe. In addition,the numerical results of the varying trend of the relative amplitude of the casing arrival with the density of cements,on the whole,are in agreement with the experimental ones.  相似文献   

8.
By one-dimensional particle-in-cell(PIC) simulations, the propagation and stability of relativistic electromagnetic(EM) solitary waves as well as modulational instability of plane EM waves are studied in uniform cold electron-ion plasmas.The investigation not only confirms the solitary wave motion characteristics and modulational instability theory, but more importantly, gives the following findings. For a simulation with the plasma density 1023 m-3 and the dimensionless vector potential amplitude 0.18, it is found that the EM solitary wave can stably propagate when the carrier wave frequency is smaller than 3.83 times of the plasma frequency. While for the carrier wave frequency larger than that, it can excite a very weak Langmuir oscillation, which is an order of magnitude smaller than the transverse electron momentum and may in turn modulate the EM solitary wave and cause the modulational instability, so that the solitary wave begins to deform after a long enough distance propagation. The stable propagation distance before an obvious observation of instability increases(decreases) with the increase of the carrier wave frequency(vector potential amplitude). The study on the plane EM wave shows that a modulational instability may occur and its wavenumber is approximately equal to the modulational wavenumber by Langmuir oscillation and is independent of the carrier wave frequency and the vector potential amplitude.This reveals the role of the Langmuir oscillation excitation in the inducement of modulational instability and also proves the modulational instability of EM solitary wave.  相似文献   

9.
刘王云  安毓英  杨志勇 《中国物理》2007,16(12):3704-3709
The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter $\gamma $, atomic distribution angle $\theta $ and coupling strength $g$ between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter $\gamma $, and that both atomic distribution angle $\theta $ and coupling strength $g$ between the field and the atom can influence the periodicity of field quantum entropy evolution.  相似文献   

10.
巩龙龑  童培庆 《中国物理快报》2005,22(11):2759-2762
By using the measure of von Neumann entropy, we numerically investigate quantum entanglement of an electron moving in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. The delocalized and localized eigenstates can be distinguished by von Neumann entropy of the individual eigenstates.There are drastic decreases in von Neumann entropy of the individual eigenstates at mobility edges. In the curve of the spectrum averaged von Neumann entropy as a function of potential parameter λ, a sharp transition exists at the metal-insulator transition point λc = 2. It is found that the von Neumann entropy is a good quantity to reflect localization and metal-insulator transition.  相似文献   

11.
A three-dimensional(3D)BurgersJ equation adopting perturbative methodology is derived to study the evolution of a shock wave with Landau quantized magnetic field in relativistic quantum plasma.The characteristics of a shock wave in such a plasma under the influence of magnetic quantization,relativistic parameter and degenerate electron density are studied with assistance of steady state solution.The magnetic field has a noteworthy control,especially on the shock wave's amplitude in the lower range of the electron density,whereas the amplitude in the higher range of the electron density reduces remarkably.The rate of increase of shock wave potential is much higher(lower)with a magnetic Held in the lower(higher)range of electron density.With the relativistic factor,the shock wave's amplitude increases significantly and the rate of increase is higher(lower)for lower(higher)electron density.The combined effect of the increase of relativistic factor and the magnetic field on the strength of the shock wave,results in the highest value of the wave potential in the lower range of the degenerate electron density.  相似文献   

12.
On the condition of electric-LO phonon strong coupling in a parabolic quantum dot, we obtain the eigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method of Pekar type. This system in a quantum dot may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground state and the first-excited state, we obtain the time evolution of the electron density. The relations of the probability density of electron on the temperature and the electron-LO-phonon coupling constant and the relations of the period of oscillation on the temperature, the electron-LO-phonon coupling constant, the Coulomb binding parameter and the confinement length are derived. The results show that the probability density of electron oscillates with a period when the electron is in the superposition state of the ground and the first-excited state, and show that there are different laws that the probability density of electron and the period of oscillation change with the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher. And it is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases with increasing the confinement length not only at lower temperatures but also at higher temperatures.  相似文献   

13.
Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular momentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the or- bital angular momentum measurement probabilities of the transmitted digit are presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect o[ turbulence defocus can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probability decreases.  相似文献   

14.
We adopt the Nambu–Jona-Lasinio(NJL) model to study the crust-core transition properties in neutron stars(NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure.Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 Me V, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction(7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 Me V and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 M_⊙.  相似文献   

15.
In this study, we present a physical model to explain the generation mechanism of nonlinear periodic waves with a large amplitude electric field structures propagating obliquely and exactly parallel to the magnetic field. The "Sagdeev potential" from the MHD equations is derived and the nonlinear electric field waveforms are obtained when the Mach number, direction of propagation, and the initial electric field satisfy certain plasma conditions. For the parallel propagation, the amplitude of the electric field waves with ion-acoustic mode increases with the increase of initial electric field and Mach number but its frequency decreases with the increase of Mach number. The amplitude and frequency of the electric field waves with ion-cyclotron mode decrease with the increase of Mach number and become less spiky, and its amplitude increases with the increase of initial electric field. For the oblique propagation, only periodic electric field wave with an ion-cyclotron mode obtained, its amplitude and frequency increase with the increase of Mach number and become spiky. From our model the electric field structures show periodic, spiky, and saw-tooth behaviours corresponding to different plasma conditions.  相似文献   

16.
邓艳  海文华  荣识广  钟宏华 《中国物理 B》2010,19(12):120502-120502
We investigate a one-dimensional open Bose-Einstein condensate with attractive interaction,by considering the effect of feeding from nonequilibrium thermal cloud and applying the time-periodic inverted-harmonic potential.Using the direct perturbation method and the exact shock wave solution of the stationary Gross-Pitaevskii equation,we obtain the chaotic perturbed solution and the Melnikov chaotic regions.Based on the analytical and the numerical methods,the influence of the feeding strength on the chaotic motion is revealed.It is shown that the chaotic regions could be enlarged by reducing the feeding strength and the increase of feeding strength plays a role in suppressing chaos.In the case of "nonpropagated" shock wave with fixed boundary,the number of condensed atoms increases faster as the feeding strength increases.However,for the free boundary the metastable shock wave with fixed front density oscillates its front position and atomic number aperiodically,and their amplitudes decay with the increase of the feeding strength.  相似文献   

17.
张涛  杨战营  赵立臣  岳瑞宏 《中国物理 B》2010,19(7):70502-070502
The exact solitonic solutions of the one-dimensional nonlinear Schr?dinger equation, which describes the dynamics of bright soliton in Bose—Einstein condensates with the time-dependent interaction in an expulsive parabolic and complex potential, are obtained by Darboux transformation. The results show that one can compress a bright soliton into an assumed peak of matter wave density by adusting the experimental parameter of the ratio of axial oscillation to radial oscillation or feeding parameter. Especially,when parameters satisfy the relation λ=2γ, the soliton is stable with time evolution without changing its shape and amplitude.  相似文献   

18.
We investigate the Schro¨dinger equation for a particle with a nonuniform solitonic mass density. First, we discuss in extent the(nontrivial) position-dependent mass V(x) = 0 case whose solutions are hypergeometric functions in tanh2x. Then, we consider an external hyperbolic-tangent potential. We show that the efective quantum mechanical problem is given by a Heun class equation and find analytically an eigenbasis for the space of solutions. We also compute the eigenstates for a potential of the form V(x) = V0 sinh2x.  相似文献   

19.
The self-consistent mean field approximation of the two-flavor NJL model,with a free parameter a to reflect the competition between the "direct" channel and the "exchange" channel,is employed to study the QCD phase structure at finite iso spin chemical potential μ_I,finite bary on chemical potential μ_B and finite temperature T,and especially to study the location of the QCD critical point.Our results show that in order to match the corresponding lattice results of iso spin density and energy density,the contributions of the "exchange" channel need to be considered in the framework of the NJL model,and a weighting factor α=0.5 should be taken.It is also found that for fixed isospin chemical potentials,the lower temperature of the phase transition is obtained with increasing a in the T-μ_I plane,and the largest difference of the phase transition temperature with different a's appears at μ_I~1.5 mπ.At μ_I=0 the temperature of the QCD critical end point(CEP) decreases with increasing a,while the critical baryon chemical potential increases.At high isospin chemical potential(μ_I=500 MeV),the temperature of the QCD tricritical point(TCP) increases with increasing a,and in the low temperature regions the system will transition from the pion superfluidity phase to the normal phase as μ_B increases.At low density,the critical temperature of the QCD phase transition with different a's rapidly increases with μ_I at the beginning,and then increases smoothly around μ_I 300 MeV.In the high baryon density region,the increase of the iso spin chemical potential will raise the critical baryon chemical potential of the phase transition.  相似文献   

20.
邓敏艺  唐国宁  孔令江  刘慕仁 《中国物理 B》2011,20(2):20510-020510
The internal energy and the spatiotemporal entropy of excitable systems are investigated with the lattice Boltzmann method.The numerical results show that the breakup of spiral wave is attributed to the inadequate supply of energy,i.e.,the internal energy of system is smaller than the energy of self-sustained spiral wave.It is observed that the average internal energy of a regular wave state reduces with its spatiotemporal entropy decreasing.Interestingly,although the energy difference between two regular wave states is very small,the different states can be distinguished obviously due to the large difference between their spatiotemporal entropies.In addition,when the unstable spiral wave converts into the spatiotemporal chaos,the internal energy of system decreases,while the spatiotemporal entropy increases,which behaves as the thermodynamic entropy in an isolated system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号