首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this work is to complete our studies on physical properties of binary mixtures of alkane+1-alkanols. This work reports densities, refractive indices, speeds of sound and isentropic compressibilities of the mixture octane + 1-butanol at different temperatures, from 288.15 to 308.15 K. From the experimental values, the corresponding excess and deviation values were computed (excess molar volumes, changes of refractive index on mixing, changes of speed of sound on mixing and changes of isentropic compressibilities on mixing). The results were fitted to variable-degree polynomials. Excess molar volumes were compared with the predictions of Nitta-Chao Group Contribution Model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
New densities are reported over the whole composition range for 1-iodoperfluorohexane+n-octane system at temperatures from 288.15 to 308.15 K at atmospheric pressure. These data have been used to compute the excess molar volumes, V m E. Large positive V m E values have been obtained over the entire range of composition, which increases when the temperature rises. The experimental data were used to calculate the isobaric thermal expansivity, and the quantities (∂V m E/∂T)p and (∂H m E/∂p)T. Furthermore, the results have been used to investigate the volumetric prediction ability of the equations of state Soave–Redlich–Kwong, Peng–Robinson, Patel–Teja and Soave–Redlich–Kwong with volume translation.  相似文献   

3.
Apparent dipole moments and relative permittivities of {x1-butanol + (1 – x) cyclohexane}, {x1-propanol + (1 – x)cyclohexane or (1 – x)benzene} and {xchloro- benzene + (1 – x)cyclohexane or (1 – x)benzene} were determined for the mole fraction range of 0.0003 < x < 0.1 at a temperature of T = 298.15 K and at a frequency of f = 100 kHz. The apparent dipole moments were calculated using Frohlich equation. The molar excess volumes for {x1-propanol + (1 – x)cyclohexane or (1 – x) benzene} and {xchlorobenzene + (1 – x)cyclohexane} were determined by a vibrating-tube densimeter at T = 298.15 K.  相似文献   

4.
Summary Experimental densities for the ternary mixture x1MTBE+x21-propanol+(1-x1-x2)decane and the binary mixtures xMTBE +(1-x)1-propanol and x1-propanol+(1-x)decane have been measured at 298.15 K and atmospheric pressure, using a DMA 4500 Anton Paar densimeter. Excess molar volumes were determined from the densities of the pure liquids and mixtures. Attending to the symmetry of the studied mixtures, suitable fitting equations have been used in order to correlate adequately the experimental data. For the ternary mixture, experimental data were also used to test several empirical expressions for estimating ternary properties from experimental binary results.  相似文献   

5.
Summary Experimental excess molar enthalpies and densities have been measured for the ternary mixture x1MTBE+x21-propanol+(1-x1-x2)octane and the involved binary mixtures at 298.15 K and atmospheric pressure. In addition, excess molar volumes were determined from the densities of the pure liquids and mixtures. A standard Calvet microcalorimeter was employed to determine the excess molar enthalpies. Densities were measured using a DMA 4500 Anton Paar densimeter. The UNIFAC group contribution model (in the versions of Larsen et al., and Gmehling et al.) has been used to estimate excess enthalpies values. Experimental data were also used to test several empirical expressions for estimating ternary properties from experimental binary results.  相似文献   

6.
The densities ρ, speeds of sound u, and viscosities η, of pure 1-butanol, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, trichloroethylene, and tetrachloroethylene and those of their binary mixtures have been measured at 298.15 K and atmospheric pressure over the entire range of compositions. Excess molar volumes V E, viscosity deviations Δη, deviation in compressibilities Δκs and excess Gibbs energy of activation G*E, were obtained from the experimental results and those were fitted to Redlich–Kister's type function in terms of mole fractions. Viscosities, speeds of sound and isentropic compressibilities of the binary mixtures have been correlated by means of several empirical and semi-empirical equations. The experimental data are analysed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

7.
The measures and calculation of different properties such as refractive index, density, speed of sound, excess molar volume, and isentropic compressibility of the ternary heterogeneous compounds by ethanol + water + (n-hexane, n-heptane, n-octane, n-nonane) have been performed in the range 288.15–323.15 K and atmospheric pressure. Attending to the accurate results of these models, the equation of state enclosing mixing rules is indicated as a simple estimation of the procedures of these properties for this kind of multicomponent systems.  相似文献   

8.
Excess molar volumes of mixtures of n-heptane + 2,5-dioxahexane and n-heptane + 2,5,8-trioxanonane were determined from density measurentents at 5, 15, 25 and 35°C. These results allowed the following mixing quantities to be reported in all range of concentrations: , (v E /T) P and (h E /P) T , at 25°C. The obtained values were then compared with the calculated values by using the Flory theory and the Nitta-Chao theory of liquid mixtures. The results are discussed in terms of order or disorder creation.  相似文献   

9.
The densities and speeds of sound in pentan-1-ol + octan-1-ol, pentan-1-ol + nonane and hexane + nonane binary systems have been measured over the whole composition range from 293.15 to 313.15 K. For comparison, literature data for the hexane + octan-1-ol mixture have also been analyzed. The quantities determined have been plotted as functions of temperature and composition. The excess molar volumes and excess molar compressions have been interpeted on the basis of the homomorph concept.  相似文献   

10.
In order to design and optimize equipment needed for production of distilled alcoholic beverages, an adequate knowledge of their physical properties and phase equilibria is necessary. The key thermodynamic information needed is for those chemicals that are the main components in terms of nonideal behavior. In this paper we present the temperature dependence of the excess molar volumes of the ternary system ethanol + water + ethyl acetate in the range 288.15–323.15 K at atmospheric pressure, due to the importance of ethyl acetate among the flavor compounds contained in this type of beverage. The observed excess molar volumes are usually negative over the whole homogeneous composition range, but take on positive values as the binary ethanol + ethyl acetate system is approached and the liquid phase separation region is observed. Because the current process designs are strongly computer oriented, the accuracy of theoretical model predictions was examined. The experimental data were used to test the capability of the Soave–Redlich–Kwong (SRK) equation of state to predict the ternary mixture behavior from binary mixture interaction parameters, which were obtained from previously published data. Derived properties, such as partial the excess molar volumes, excess isobaric expansibility, and the pressure derivative of excess molar enthalpy at constant temperature were calculated, due to their importance in the study of specific molecular interactions.  相似文献   

11.
Densities and speeds of sound for the ternary system 1-butanol+1,4-dioxane+cyclohexane have been measured at the temperatures of 298.15 and 313.15 K. Excess molar volumes and excess isentropic compressibilities have been calculated from experimental data and fitted by the Redlich-Kister equation for ternary mixtures. The ERAS model has been used to calculate excess molar volumes of the ternary mixture from parameters obtained from the constituent binary mixtures.  相似文献   

12.
Isothermal compressibilities K and isobaric thermal expansion coefficients p have been measured at 25 and 45°C for pure components and the following binary mixtures: 1-chlorobutane+normal alkanes (n-Cn) where n=6, 8, 10, 12, 14 and 16. With these results and other thermodynamic data from literature the next mixing quantities have also been reported: (V E/T)P, – (V)E/P)T, K S v , H E/P)T, (pVT and Cv. The obtained results have been compared at 25°C with the calculated values by using the Prigogine-Flory-Patterson theory of liquid mixtures. The theory predicts the excess volume VE and V E/P)T values rather well, the C P E quite poorly, while for V E/T)P and V E/P)T it is only predicted the trend with the chain length of the n-alkane. The last two quantities show deviations between theoretical and experimental, slightly higher in systems with longer n-alkanes than for shorter ones. Our conclusion is that a nonrigid linear molecule, like 1-chlorobutane, has a low ability as a breaker of the pure n-Cn orientation correlations, in between that which we found for toluene and p-xylene and much smaller than for cyclohexane or benzene.  相似文献   

13.
This article presents the analysis of the following physical properties such as refractive indices, excess molar volumes, sound velocity and the temperature dependence of the ternary system ethanol?+?n-hexane?+?n-octane in the temperature range 288.15–323.15?K at atmospheric pressure. The derived properties are calculated from data obtained experimentally and fitted to Cibulka equation.  相似文献   

14.
15.
Summary Densities at 298.15 K and atmospheric pressure have been measured, using a DMA 4500 Anton Paar densimeter, for the ternary mixture methyl tert-butyl ether (MTBE)+1-pentanol+decane and for the involved binary mixtures MTBE+1-pentanol and 1-pentanol+decane. The excess molar volumes for the binary mixture MTBE+decane was reported in an earlier work [1]. In addition, excess molar volumes were determined from the densities of the pure liquids and mixtures. Suitable fitting equations have been used in order to correlate adequately the excess molar volumes. The empirical expressions of Kohler [18], Jacob and Fitzner [19], Colinet [20], Knobeloch and Schwartz [21], Tsao and Smith [22], Toop [23], Scatchard et al. [24], Hillert [25], Mathieson and Thynne [26] were applied to estimate ternary properties from binary results.  相似文献   

16.
Speeds of sound of the ternary mixtures cyclohexane+1,3-dioxolane+2-butanol and n-hexane+1,3-dioxolane+2-butanol have been measured at the temperatures of 298.15 and 313.15 K. Isentropic compressibilities and excess isentropic compressibilities have been calculated from experimental data. We have also compared the experimental isentropic compressibilities with calculated values from the free length theory and the collision factor theory. Experimental results show positive values of excess isentropic compressibilities in almost the whole composition range for the ternary mixture containing cyclohexane, meanwhile they are negative for the mixture containing n-hexane. Such different behaviour of these systems is related to the large free volume shown by n-hexane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
In the scope of design and optimise the equipment for alcoholic distillate beverages production, a sufficient knowledge of physical properties and phase equilibria is necessary. In this paper we present the temperature dependence of excess molar volumes of the ternary system ethanol+water+1-propanol at the range 288.15–323.15 K and atmospheric pressure, due to the importance of the 1-propanol among the flavour compounds contained into this type of beverages. Derived properties were computed due to its importance in the study of specific molecular interactions.  相似文献   

18.
The densities, heat capacities, and dilution enthalpies ofn-pentanol+2-methyl-2-butanol mixtures have been measured, in many cases as a function of temperature, over the complete mole fraction range. Excesses thermodynamic properties, apparent and partial molar heat capacities, volumes and expansibilities were derived. The concentration and temperature dependences of these functions are discussed in terms of the variations of the structure of the system caused by the participation of the two alcohol molecules (with quite different steric hindrance of the alkyl chain around the-OH group) in the dynamic intermolecular association process through hydrogen bonding.  相似文献   

19.
Densities at 298.15 K and atmospheric pressure have been measured, using a DMA 4500 Anton Paar densimeter, for the ternary mixture methyl tert-butyl ether (MTBE)+1-pentanol+nonane and for the involved binary mixture 1-pentanol+nonane. In addition, excess molar volumes were determined from the densities of the pure liquids and mixtures. Suitable fitting equations have been used in order to correlate adequately the excess molar volumes. Experimental data were also used to test several empirical expressions for estimating ternary properties from experimental binary results.  相似文献   

20.
To investigate the molecular interaction study between secondary amine with aryl and alkyl ether, we report densities, speeds of sound, viscosities and refractive indices of N-ethylaniline (NEA) with aryl (anisole, phenetole) and alkyl (tert-butyl methyl ether) ether over the entire composition regime and in the temperature range of 293.15–323.15 K at 5 K intervals. Various excess and transport properties were derived from the experimental data and the excess parameters were fitted to the Redlich–Kister polynomial equation using multiparametric non-linear regression analysis to derive the binary coefficients and to estimate the standard deviation. Molecular interactions between the unlike molecules were analysed through dipole–dipole interactions, cross-association between the components of the mixtures and H-bond formation. Viscosity and refractive index of the mixtures were predicted through several empirical equations and compared with the experimental results. Prigogine–Flory–Patterson statistical theory was used to predict the excess molar volume results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号