首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calculations of the apparent activation energy for the growth of macromolecular entities in the form of cones on the surface of a growing film, as well as the apparent activation energy for the interaction of free radicals of the film with air oxygen after exposure of the film to the atmosphere, confirmed the existence of three steps of the formation of polymer films from heptane in a low-temperature, low-pressure plasma. It was found that the cones have a structure other than that of the film on which they are formed.  相似文献   

2.
I. Lelidis  C.   edman 《Liquid crystals》2003,30(6):643-649
We report some preliminary results on the morphology of thin N,N -dimethyl- n -octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

3.
We report some preliminary results on the morphology of thin N,N -dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

4.
Wettability was controlled in a rational manner by individually and simultaneously manipulating surface topography and surface chemical structure. The first stage of this research involved the adsorption of charged submicrometer polystyrene latex particles to oppositely charged poly(ethylene terephthalate) (PET) film samples to form surfaces with different topographies/roughness; adsorption time, solution pH, solution ionic strength, latex particle size, and substrate charge density are external variables that were controlled. The introduction of discrete functional groups to smooth and rough surfaces through organic transformations was carried out in the second stage. Amine groups (-NH(2)) and alcohol groups (-OH) were introduced onto smooth PET surfaces by amidation with poly(allylamine) and adsorption with poly(vinyl alcohol) (PVOH), respectively. On latex particle adsorbed surfaces, a thin layer of gold was evaporated first to prevent particle redistribution before chemical transformation. Reactions with functionalized thiols and adsorption with PVOH on patterned gold surfaces successfully enhanced surface hydrophobicity and hydrophilicity. Particle size and biomodal particle size distribution affect both hydrophobicity and hydrophilicity. A very hydrophobic surface exhibiting water contact angles of 150 degrees /126 degrees (theta(A)/theta(R)) prepared by adsorption of 1-octadecanethiol and a hydrophilic surface with water contact angles of 18 degrees /8 degrees (theta(A)/theta(R)) prepared by adsorption of PVOH were prepared on gold-coated surfaces containing both 0.35 and 0.1 microm latex particles. The combination of surface topography and surface-chemical functionality permits wettability control over a wide range.  相似文献   

5.
Using a plasma-induced graft polymerization technique, which is well known as a surface modification method, the grafted polymer was formed in pores of the porous material. This study examined the filling mechanism. Five thin porous films were sandwiched together, and employed as the substrate. The substrate was treated by plasma, and the change in surface tension and radical formation was measured for each sheet after the sheet was separated. The only surface on which surface-tension change was detected, was that of the sheet directly exposed to the plasma. Although plasma treatment made polymer radicals primarily on the outer surface of the sheet, the treatment also formed a few radicals inside the sheets. The radicals inside the sheets reacted with methylacrylate and grafted polymer formed in the pores. The location of grafted polymer depended on the balance between monomer diffusivity and reactivity. The grafting rate depended on which monomer solvent was used for the polymerization. Thus, the grafted membrane morphology could be controlled by varying the grating solvent composition. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Published data appeared in the last decade on the modification of ultrahigh-molecular-weight polyethylene (UHMWPE) films and plates with the use of low-temperature plasma are considered. Setups for sample processing by discharges of various types and methods for studying the changes occurring on the polymer surface are described. The results of the examination of contact, adhesion, strength, and tribological properties are presented. Changes in the chemical composition and structure of UHMWPE films are discussed, and data on the metabolic activity of the modified films are presented.  相似文献   

7.
We covalently immobilized poly(ethylene oxide) (PEO) chains onto a fluorinated ethylene propylene copolymer (FEP) surface. On the FEP surface, aldehyde groups were first deposited by plasma polymerization of acetaldehyde or acrolein. Then, amino‐PEO chains were immobilized through Schiff base formation, which was followed by reduction stabilization with sodium cyanoborohydride. The PEO‐grafted polymer surfaces thus prepared were characterized by X‐ray photoelectron spectroscopy (XPS), atomic force microscopy, contact‐angle measurements, and protein adsorption. The dramatic increase in the C O intensity of the high‐resolution XPS C 1s spectrum, together with an overall increase in oxygen content, indicated the successful attachment of PEO chains onto the acetaldehyde plasma surfaces. The amount of grafted PEO chains depended on the superfacial density of the plasma‐generated aldehyde groups. The grafted monoamino‐PEO chains formed a brushlike structure on the polymer surface, whereas the bisamino‐PEO chains predominately adopted a looplike conformation. The PEO surface had a regular morphology with greater roughness than the aldehyde surface underneath. Surface hydrophilicity increased with the grafting of PEO. Also, the bisamino‐PEO‐grafted surface had slightly higher surface hydrophilicity than its monoamino‐PEO counterpart. These PEO coatings reduced fibrinogen adsorption by 43% compared with the substrate FEP surface. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2323–2332, 2000  相似文献   

8.
In the last years there has been a growing industrial interest in modifying the performance of traditional polymers by using additives, working as modifiers for processing, rheological, transport, bonding, and pigmentation properties. This work was focused on the understanding of the relationships between chemical structure and water vapour transport through a polymer matrix modified by different additives regarding hydrophilicity and molecular structure. A screening of the changes in surface energies and bulk morphology, as a function of the chemical nature and weight percent modifier, allowed estimating the effects on the water vapour transport through polymer membranes. Static and dynamic contact angle measurements explained the difference in surface wettability and affinity to polar species such as water molecules. Modifiers having polar groups improved the surface hydrophilicity, enhancing the breathability of the membranes, while hydrophobic components such as aromatic structures led to a reduction of the water vapour mass uptake onto the membrane surface. On the other hand, thermal analyses showed a tendency of the polymer structure to reduce its own mobility with consequent slowdown of the diffusion through polymer matrix. Modification with large and bulky structures disrupted the polymer packing density, but simultaneously increased the stiffness of the polymer chains, inhibiting the penetrant migration. As a result, balancing the effects due to modifier polarity and bulky structure, it is possible to change the performance of a polymer in terms of transport, going from breathable membranes to barrier films.  相似文献   

9.
A method for the determination of coating film thicknesses at nanometer resolution based on surface masking and atomic force microscopy (AFM) is described. A polymeric mask is used to cover part of a substrate during the deposition of thin polymeric coatings by plasma polymerization, allowing the production of well defined polymer steps of heights of a few tens of nanometers. Tapping mode AFM has been employed to analyze the topography of these steps at high resolution. This method has also allowed accurate measurement of the kinetics of the deposition of plasma polymer films over a range of exposure times. XPS analysis of different substrate surfaces following mask removal found barely detectable residues, suggesting that the underlying surface chemistry remains unchanged, and accessible for further modification. In combination with quartz crystal microgravimetry, the method has been applied to the measurement of the density of plasma polymer coatings in the thickness range 4–50 nm.  相似文献   

10.
Polymerization of acrylic acid with hexamethyldisilazane (HMSZ) was carried out in a mixture by use of pulsed and continuous wave plasmas. The polymer deposition rate and the chemical structures of product films were investigated with regard to the power effects of the plasmas. A copolymer-like structure was formed in general, but the products were not necessarily composed of the simple agglomeration of the polymer components. The power consumed in plasma polymerization influenced the chemical structure, and oxide, in the form of Si—O, was produced more densely in the polymers at higher rather than lower powers. The polymer structure was related to the chemical properties, and the surface wetting was also changed by the power used in the plasma copolymerization. The films were moderately hydrophilic in the polymers produced at lower wattages, but became as hydrophobic as those from HMSZ when prepared at high wattages.  相似文献   

11.
Chemical transformations in the surface layer of thin poly(trimethylsilylpropyne) and poly(vinyltrimethylsilane) films in the plasma and afterglow of RF discharges in fluorinated gases were experimentally studied. The mechanism of chemical transformations and their effect on the gas permeability of the polymer films are discussed.  相似文献   

12.
The surfaces of polyimide films and the structure just below the surfaces have been extensively studied as people have sought to improve and understand the key factors controlling adhesion. Treatments of all types from primers to plasma etching to sand blasting have been evaluated with varying efforts depending on the application. In recent years, the emphasis has been on understanding the chemical and morphological changes effected by these treatments and then correlating chemistry and morphology with adhesion. The picture that emerges is that surface energy alone, as is the case with most polymers, usually is insufficient to predict adhesion to polyimides. Instead, initial bond strength and bond durability, whether with adhesives or metals directly deposited on the film, depend on chemical bonding, diffusion between deposited layers and the polyimide, formation of a micro composite region controlled in part by topography and the viscoelastic properties of the polymer below the surface. Poor viscoelastic behavior frequently is characterized as a weak boundary layer. Recent work has shown that small amounts of organometallics that diffuse to the surface during the film forming process can significantly affect bondability both to adhesives and to vacuum deposited metals. The possible effect of these additives on bond formation, viscoelastic properties, diffusion and topography is under investigation and will be discussed along with an over view of the primary film forming steps that might affect surface chemistry and structure.  相似文献   

13.
分别在导电铝合金片(Al)和具有阳极氧化铝层的非导电铝片(AAO/Al), 以及铟锡氧化物导电玻璃(ITO/glass)和普通非导电玻璃(glass)表面通过提拉法制备出TiO2/Al和TiO2/AAO/Al, 以及TiO2/ITO/glass和TiO2/glass两组TiO2薄膜样品, 通过测试紫外光照下水滴接触角的变化考察TiO2薄膜的光致亲水性. 结果表明, 相对于TiO2/Al2O3/Al, 基底导电的TiO2/Al表现出较好的光致亲水性能; 而相对于TiO2/glass, 基底导电的TiO2/ITO/glass表现出较差的光致亲水性能. 分析认为, Al和ITO两导电基底和TiO2薄膜间的不同电子转移方向影响TiO2薄膜的光致亲水性能, Al片提供电子给TiO2有助于提高以光生电子为主要初级活性物种的光致亲水性, 而ITO接受TiO2的光生电子, 导致光致亲水性的下降.  相似文献   

14.
The effects of treatment in a radiofrequency (RF) discharge plasma on the rate of chemical etching of the tracks made by xenon ions (with an energy of ~1 MeV/nucleon) in poly(ethylene terephthalate) (PETP) films were investigated. The influence of plasma treatment conditions on the structure and properties of nuclear track membranes formed by etching was studied. It was found that the RF plasma treatment of heavy ion-bombarded PETP films leads to a decrease in etchability of both tracks and the starting polymer matrix. The changes in track and matrix etchability due to crosslinking of the polymer surface layer were shown to be responsible for the asymmetry of the track membrane structure.  相似文献   

15.
Hybrid nanocomposite films containing silica (??11.4 wt.%) or titania (??18.8 wt.%) in the polymer matrix were prepared by the sol-gel method using the hydrolytic polycondensation of tetraethoxysilane and tetrabutoxysilane in a THF solution of aromatic polymer, polysulfone (PSF). The influence of the oxide nature and the film composition on the structure, the interaction of the polymer with oxides, hydrophilicity, and sorption-diffusion properties of the hybrid films were studied by FTIR spectroscopy, atomic force microscopy, dynamic light scattering, and a complex of other physicochemical methods. The absence of chemical or intermolecular hydrogen bonds between the polymer and oxide particles in the PSF films was shown. The average size of the oxides (SiO2, ??20 nm; TiO2, ??90 nm) in the films and roughness of their surface (??0.2?C0.8 nm) were determined. The introduction of oxides into the polymer matrix increases the hydrophilic properties and the ability of the PSF films to swell in water; the diffusion coefficients of water and permeability of water vapor in the PSF films also increase. Titania also induces a more considerable change in the structure of the polymer matrix and more strongly affects the sorption-diffusion properties of the hybrid films in aqueous solutions of THF. All prepared nanocomposite films PSF/SiO2 and PSF/TiO2 are capable of extracting an organic component from aqueous solutions and can be used as sorbents and membrane films for the removal of organic substances from the aqueous medium.  相似文献   

16.
In this work, polycarbonate-TiO2 nanocomposite films were prepared with different percentages. The aim was to consider the effect of O2 LF plasma (50 Hz) on the hydrophilicity, surface energy, and surface morphology of polycarbonate and polycarbonate-TiO2 nanocomposite. Structure of samples was determined by using X-ray diffraction analysis. In comparison with the reference sample, the samples’ structure did not change after plasma treatment. Surface properties of polycarbonate and polycarbonate-TiO2 nanocomposite films were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurement, atomic force microscopy (AFM), and Vickers microhardness tester. XPS analysis showed that the surface of samples became more oxidized due to plasma treatment. The water contact angle significantly decreased from 88° to 15° after plasma treatment. It was observed that the hardness of the nanocomposite films was not modified after plasma treatment.  相似文献   

17.
Composites with titanium oxide structures on the surface of a polymer matrix were prepared by preliminary plasma activation of polytetrafluoroethylene films, followed by chemical treatment with vapors of titanium tetrachloride and water. The chemical composition and structure of the modified film surface were studied by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The stability of the formed surface charge increases in going from the initial film to the plasma-activated film, then to the film successively treated with vapors of titanium tetrachloride and water, and finally to the plasma-activated film treated subsequently with vapors of titanium tetrachloride and water. The modified polytetrafluoroethylene films are of interest as electrets with enhanced operation characteristics.  相似文献   

18.
The structure and adsorption patterns of type I and type III collagen were imaged on various polymer substrates with atomic force microscopy. Type I collagen had higher adsorption on polystyrene than on a series of polymethacrylates and formed a network of tightly, interwoven strands. Upon adsorption to different polymethacrylates, with varying side chain lengths, the collagen molecules formed long, branching fibrils. Types I and III collagen had different adsorption patterns, in some cases, on the identical substrate material. For example, instead of forming a tightly packed network, type III forms long, branching fibers on the polystyrene surface. On other materials, such as poly(n-butyl methacrylate), the two types of collagen showed similar adsorption pattern and structure. Adsorbed collagen was also imaged on various blends of polystyrene and polymethacrylates to determine how the polymer surface chemical structure and surface topography mediates protein adsorption.  相似文献   

19.
Nanocomposite hybrid films containing silicon and titanium compounds in the polymer matrix are prepared through the sol-gel method via the hydrolytic polycondensation of Si and Ti alkoxides (tetraethoxysilane and titanium tetrabutoxide) in the THF solution of a hydrophobic polymer, ethyl cellulose. Their structure and properties are studied with the use of a complex of physicochemical methods. During the hydrolysis of tetraethoxysilane and the subsequent polycondensation of the reaction products, silicon atoms are incorporated into the polymer and form -O-Si-O-bonds involving hydroxyl groups of ethyl cellulose. In the sol-gel method, titanium alkoxide yields nanosized particles of titanium dioxide that play the role of fillers in the polymer matrix. Titanium-containing films show solubility in THF and, after prolonged contact with the solvent, precipitate titanium dioxide from the solution. Hybrid films containing silicon are insoluble owing to the formation of a chemical network between polymer molecules and Si-OH groups of the products of hydrolysis of silicon alkoxide, as confirmed by the IR data. It is shown that the amounts and types of alkoxides and the diameters of the structures formed in the polymer matrix via the sol-gel procedure affect the hydrophilicity levels of ethyl cellulose hybrid films and their abilities to swell in water and aqueous solutions of organic dyes (brilliant blue and methylene blue). Ethyl cellulose hybrid films are hydrophilic, and they facilitate the removal of dye molecules from aqueous solutions. The best properties are featured by the films containing nanosized particles of titanium dioxide in the polymer matrix.  相似文献   

20.
The morphology and chemical structure of nanosized polytetrafluoroethylene films deposited on the surface of track-etched poly(ethylene terephthalate) membranes by means of radiofrequency magnetron sputtering and electron-beam sputtering of the polymer in a vacuum have been studied using atomic force microscopy and X-ray photoelectron spectroscopy. It has been established that the morphology of films formed with the use of these coating techniques varies considerably. This is due to the size of the deposited polymer particles. The particles formed by the electron-beam sputtering of polytetrafluoroethylene are larger than those produced by magnetron sputtering of the polymer. It has been shown that the chemical composition of the films deposited by electron-beam sputtering in a vacuum is more in line with the composition and structure of the initial polymer than the films obtained by radiofrequency magnetron sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号