首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— The subcellular and, specifically, mitochondrial localization of the photodynamic sensitizers Photofrin and aminolevulinic acid (ALA)-induced protoporphyrin-IX (PpIX) has been investigated in vitro in radiation-induced fibrosarcoma (RIF) tumor cells. Comparisons were made of parental RIF-1 cells and cells (RIF-8A) in which resistance to Photofrin-mediated photodynamic therapy (PDT) had been induced. The effect on the uptake kinetics of Photofrin of coincubation with one of the mitochondria-specific probes 10N-Nonyl acridine orange (NAO) or rhodamine-123 (Rh-123) and vice versa was examined. The subcellular colocalization of Photofrin and PpIX with Rh-123 was determined by double-label confocal fluorescence microscopy. Clonogenic cell survival after ALA-mediated PDT was determined in RIF-1 and RIF-8A cells to investigate cross-resistance with Photofrin-mediated PDT. At long (18 h) Photofrin incubation times, stronger colocalization of Photofrin and Rh-123 was seen in RIF-1 than in RIF-8A cells. Differences between RIF-1 and RIF-8A in the competitive mitochondrial binding of NAO or Rh-123 with Photofrin suggest that the inner mitochondrial membrane is a significant Photofrin binding site. The differences in this binding may account for the PDT resistance in RIF-8A cells. With ALA, the peak accumulations of PpIX occurred at 5 h for both cells, and followed a diffuse cytoplasmic distribution compared to mitochondrial localization at 1 h ALA incubation. There was rapid efflux of PpIX from both RIF-1 and RIF-8A. As with Photofrin, ALA-induced PpIX exhibited weaker mitochondrial localization in RIF-8A than in RIF-1 cells. Clonogenic survival demonstrated cross-resistance to incubation in PpIX but not to ALA-induced PpIX, implying differences in mitochondrial localization and/or binding, depending on the source of the PpIX within the cells.  相似文献   

2.
The effects of Photofrin-mediated photodynamic therapy (PDT) on the in vitro cell survival and in vivo tumor growth of murine radiation-induced fibrosarcoma (RIF) cell tumors have been examined following in vivo PDT treatment of tumors. The response to in vivo PDT is examined in tumors derived from RIF-1 mouse fibrosarcoma cells and in tumors derived from RIF-8A cells, which show in vitro resistance to PDT. A significant reduction in tumor volume is observed over the first three days following in vivo PDT treatment of either 5 or 10 mg/ kg. The reduction in tumor volume is greater for a 10 compared to a 5 mg/ml dose and occurs to a similar extent for both RIF-1 and RIF-8A tumors. The re-growth is significantly delayed for RIF-1 compared to RIF-8A tumors, indicating a greater response for RIF-1 tumors compared to RIF-8A tumors following PDT. A reduced response of the RIF-8A compared to the RIF-1 tumor cells is also observed in the clonogenic survival of cells from tumors that were excised and explanted in vitro immediately following in vivo PDT treatment. These data indicate that the intrinsic cell sensitivity to PDT is an important component in the mechanism that leads to tumor response following in vivo photodynamic therapy.  相似文献   

3.
Although there is evidence that the p53 tumor suppressor plays a role in the response of some human cells to chemotherapy and radiation therapy, its role in the response of human cells to photodynamic therapy (PDT) is less clear. In order to examine the role of p53 in cellular sensitivity to PDT, we have examined the clonogenic survival of normal human fibroblasts that express wild-type p53 and immortalized Li-Fraumeni syndrome (LFS) cells that express only mutant p53, following Photofrin-mediated PDT. The LFS cells were found to be more resistant to PDT compared to normal human fibroblasts. The D37 (LFS cells)/D37 (normal human fibroblasts) was 2.8 +/- 0.3 for seven independent experiments. Although the uptake of Photofrin per cell was 1.6 +/- 0.1-fold greater in normal human fibroblast cells compared to that in LFS cells over the range of Photofrin concentrations employed, PDT treatment at equivalent cellular Photofrin levels also demonstrated an increased resistance for LFS cells compared to normal human fibroblasts. Furthermore, adenovirus-mediated transfer and expression of wild-type p53 in LFS cells resulted in an increased sensitivity to PDT but no change in the uptake of Photofrin per cell. These results suggest a role for p53 in the response of human cells to PDT. Although normal human fibroblasts displayed increased levels of p53 following PDT, we did not detect apoptosis or any marked alteration in the cell cycle of GM38 cells, despite a marked loss of cell viability. In contrast, LFS cells exhibited a prolonged accumulation of cells in G2 phase and underwent apoptosis following PDT at equivalent Photofrin levels. The number of apoptotic LFS cells increased with time after PDT and correlated with the loss of cell viability. A p53-independent induction of apoptosis appears to be an important mechanism contributing to loss of clonogenic survival after PDT in LFS cells, whereas the induction of apoptosis does not appear to be an important mechanism leading to loss of cell survival in the more sensitive normal human fibroblasts following PDT at equivalent cellular Photofrin levels.  相似文献   

4.
5.
Photofrin® photodynamic therapy (PDT) has recently received FDA approval for the palliative treatment of to-tally and partially obstructing esophageal malignancies. However, there is a need for new PDT photosensitizers because Photofrin has a number of undesirable features. The purpose of this study was to evaluate the efficacy of four amine-bearing silicon phthalocyanines—Pc4, Pc10, Pc12 and Pc18—as potential PDT photosensitizers. Equimolar concentrations of these Pc were found to be highly effective at causing the regression of RIF-1 tumors trans-planted to C3H/HeN mice. The amount of Pc4 necessary to cause an equivalent amount of tumor regression in this model system was substantially less than the amount of Photofrin. The cutaneous phototoxicity of the silicon Pc photosensitizer was assessed by the utilization of the murine ear-swelling model. When C3H mice were exposed to 167 J/cm2 of polychromatic visible light from a UVB-filtered solar simulator, which emitted UV radiation and visible light above 320 nm, the Pc produced little, if any, cutaneous photosensitivity. These results indicate that Pc4, Pc10, Pc12 and Pc18 are at least as effective as Photofrin in PDT protocols, while at the same time addressing many of the drawbacks of Photofrin.  相似文献   

6.
The polar methanolic fraction (PMF) of the Hypericum perforatum L. extract has recently been developed and tested as a novel, natural photosensitizer for use in the photodynamic therapy (PDT), and photodynamic diagnosis (PDD). PMF has been tested on HL-60 leukemic cells and cord blood hemopoietic progenitors. In the present study, the efficacy of PMF as a phototoxic agent against urinary bladder carcinoma has been studied using the T24 (high grade metastatic cancer), and RT4 (primary low grade papillary transitional cell carcinoma) human bladder cancer cells. Following cell culture incubation, PMF was excited using 630 nm laser light. The photosensitizer exhibited significant photocytotoxicity in both cell lines at a concentration of 60microg/ml, with 4-8 J/cm(2) light dose, resulting in cell destruction from 80% to 86%. At the concentration of 20microg/ml PMF was not active in either cell line. These results were compared with the results obtained in the same cell lines, under the same conditions with a clinically approved photosensitizer, Photofrin. Photofrin was used in the maximum clinically tolerable dose of 4microg/ml, and it was also excited with 630 nm laser light. In the T24 cell Photofrin exhibited slightly less photocytotocixity, compared with PMF, resulting in 77% cell death with 8J/cm(2) light dose. However, against the RT4 cells Photofrin resulted in minimal cell death (9%) with even 8J/cm(2) light dose. Finally, the type of cell death induced by PMF photoactivation was studied using flow cytometry and DNA laddering. Cell death by PMF photodynamic action in these two bladder cell lines is caused predominently by apoptosis. The reported significant photocytotoxicity, selective localization, natural abundance, easy, and inexpensive preparation, underscore that the PMF extract hold the promise of being a novel, effective PDT photosensitizer.  相似文献   

7.
A series of 5-aminolevulinic acid and its alkylester methanesulfonates was exploited to photodynamic therapy(PDT) of human lymphocytic cells, U-937 in vitro. The PDT efficiency is influenced by the concentration and incubation time. Generally, for ALA and its alkylester methanesulfonates, the cell survival rate decreases and the accumulation ability of PpIX increases with the concentration and incubation time. We found that the longer carbon chain methanesulfonates(C5-S, C6-S, C8-S) exhibit better PDT effec...  相似文献   

8.
It has been suggested that combination high dose rate (HDR) intraluminal brachytherapy and photodynamic therapy (PDT) in nonsmall cell lung cancer (NSCLC) may improve efficacy of treatment, reduce toxicity and enhance quality of life for patients. To provide a cellular basis for this we examined the in vitro sensitivity of MRC5 normal lung fibroblasts and four NSCLC cell lines following HDR radiation, PDT and combined HDR radiation and PDT. HDR radiation was cobalt-60 gamma rays (1.5–1.9 Gy min−1). For PDT treatment, cells were exposed to 2.5 μg mL−1 Photofrin for 18–24 h followed by light exposure (20 mW cm−2). For combined treatment cells were exposed to Photofrin and then either exposed to light and 15–30 min later exposed to HDR radiation or exposed to HDR radiation and 15–30 min later exposed to light. D37 values calculated from clonogenic survival curves indicated a six-fold difference in HDR radiation sensitivity and an eight-fold difference in PDT sensitivity. The effect of combined treatment was not significantly different from an additive effect of the individual treatment modalities for the NSCLC cells, but was significantly less than additive for the MRC5 cells. These results suggest an equivalent tumor cell kill may be possible at reduced systemic effects to patients.  相似文献   

9.
Endogenous protoporphyurin IX (PpIX) synthesis after δ-aminolaevulinic acid (ALA) administration occurs in cancer cells in vivo; PpIX, which has a short half-life, may thus constitute a good alternative to haematoporphyrin derivative (HPD) (or Photofrin). This study assesses the ability of the human hepatocarcinoma cell line HepG2 to synthesize PpIX in vitro from exogenous ALA, and compares ALA-induced toxicity and phototoxicity with the photodynamic therapy (PDT) effects of HPD on this cell line.

ALA induced a dose-dependent dark toxicity, with 79% and 66% cell survival for 50 and 100 μg ml−1 ALA respectively after 3 h incubation; the same treatment, followed by laser irradiation (λ = 632 nm, 25 J cm−2), induced a dose-dependent phototoxicity, with 54% and 19% cell survival 24 h after PDT. Whatever the incubation time with ALA, a 3 h delay before light exposure was found to be optimal to reach a maximum phototoxicity.

HPD induced a slight dose-dependent toxicity in HepG2 cells and a dose- and time-dependent phototoxicity ten times greater than that of ALA-PpIX PDT. After 3 h incubation of 2.5 and 5 μg ml−1 HPD, followed by laser irradiation (λ = 632 nm, 25 J cm−2), cell survival was 59% and 24% respectively at 24 h.

Photoproducts induced by light irradiation of porphyrins absorb light in the red spectral region at longer wavelengths than the original porphyrins. The possible enhancement of PDT effects after HepG2 cell incubation with ALA or HPD was investigated by irradiating cells successively with red light (λ = 632 nm) and light (λ = 650 nm). The total fluence was kept constant at 25 J cm−2. For both HPD and ALA-PpIX PDT, phototoxicity was lower when cells were irradiated for increased periods with λ = 650 nm light than with λ = 632 nm light alone. This suggests that any photoproducts involved either have a short life or are poorly photoreactive.

Not all cell lines can synthesize PpIX after ALA incubation. HepG2 cells, which can synthesize enzymes and precursors of endogenous porphyrin synthesis, represent a good in vitro model for experiments using ALA-PpIX PDT. In addition, ALA-PpIX PDT may represent a new, specific treatment for hepatocarcinomas.  相似文献   


10.
Identifying the cellular responses to photodynamic therapy (PDT) is important if the mechanisms of cellular damage are to be fully understood. The relationship between sensitizer, fluence rate and the removal of cells by trypsinization was studied using the RIF-1 cell line. Following treatment of RIF-1 cells with pyridinium zinc (II) phthalocyanine (PPC), or polyhaematoporphyrin at 10 mW cm-2 (3 J cm-2), there was a significant number of cells that were not removed by trypsin incubation compared to controls. Decreasing the fluence rate from 10 to 2.5 mW cm-2 resulted in a two-fold increase in the number of cells attached to the substratum when PPC used as sensitizer; however, with 5,10,15,20 meso-tetra(hydroxyphenyl) chlorine (m-THPC) there was no resistance to trypsinization following treatment at either fluence rate. The results indicate that resistance of cells to trypsinization following PDT is likely to be both sensitizer and fluence rate dependent. Increased activity of the enzyme tissue-transglutaminase (tTGase) was observed following PPC-PDT, but not following m-THPC-PDT. Similar results were obtained using HT29 human colonic carcinoma and ECV304 human umbilical vein endothelial cell lines. Hamster fibrosarcoma cell (Met B) clones transfected with human tTGase also exhibited resistance to trypsinization following PPC-mediated photosensitization; however, a similar degree of resistance was observed in PDT-treated control Met B cells suggesting that tTGase activity alone was not involved in this process.  相似文献   

11.
Two distinct photodynamic therapy-resistant variants of the murine radiation-induced fibrosarcoma (RIF) cell line have been isolated. One strain displayed relative resistance over the parental RIF-1 strain to treatment with the porphyrin-based compound, polyhaematoporphyrin (PHP), whereas the other strain displayed relative resistance over the RIF-1 strain to treatment using the cationic zinc (II) pyridinium-substituted phthalocyanine (PPC). The PHP-resistant strain did not display cross-resistance to PPC-mediated treatment, and vice versa. In both PDT-resistant strains, the increased resistance could not be attributed to altered cellular growth rate, antioxidant capacity or intracellular sensitizer localization. The PHP-resistant strain displayed resistance to treatment with both short (1 h) and extended (16 h) sensitizer incubation periods, which may indicate that in this strain, the resistance has arisen through an alteration in a membrane component. Conversely, the PPC-resistant strain only displayed increased resistance over the parental cells to treatment involving the short drug incubation, which is likely to reflect the existence of a threshold effect caused by the alteration of an individual cellular target. Each resistant strain has been compared to the parental strain in terms of cellular sensitivity to treatment with a range of other photosensitizers, hyperthermia, UV light and the anticancer agent cis-diamminedichloroplatinum. The PHP-resistant strain exhibited crossresistance to photosensitization treatment using exogenously added protoporphyrin IX, and also to treatment with the anionic phthalocyanine sensitizers, zinc (II) tetrasulfonated phthalocyanine and zinc (II) tetraglycine-substituted phthalocyanine. The PPC-resistant strain did not display cross-resistance to any of the treatment strategies employed in this investigation. The results of this investigation indicate that there are at least two distinct mechanisms of PDT resistance in RIF cells, and that the mechanism of PHP resistance may, to some extent depend, upon the physical nature of the sensitizer molecule.  相似文献   

12.
5,10,15,20-Tetra(m-hydroxyphenyl)chlorin (m-THPC, Foscan) is an extremely powerful photosensitizer showing up to 200 times the photodynamic activity of Photofrin in patients, in terms of drug/light dose. The influence of treatment conditions on the photodynamic efficacy of m-THPC has been compared to polyhematoporphyrin (PHP), a Photofrin equivalent, and a cationic pyridinium zinc (II) phthalocyanine (PPC), using the RIF-1 cell line. As predicted, the presence of serum during sensitizer incubation reduced the photodynamic efficacy of all three sensitizers. However, the presence of serum during the illumination period only had an inhibitory effect with PHP and PPC but not m-THPC. Quantification of the intracellular levels of sensitizer revealed that this was due to the efflux of PPC and PHP but not m-THPC into the medium, suggesting that m-THPC is tightly sequestered on entering the cell. This may partially explain the high efficacy of m-THPC in clinical photodynamic therapy and also highlights the importance not only of incubation conditions but also illumination conditions when in vitro comparisons are performed.  相似文献   

13.
Meta-tetra(hydroxyphenyl)chlorin (mTHPC) is in clinical trials for the photodynamic therapy (PDT) of localized-stage cancer. The PDT susceptibility of cells expressing multidrug resistance (MDR) phenotype is an attractive possibility to overcome the resistance to cytotoxic drugs observed during cancer chemotherapy. The accumulation, photocytotoxicity and intracellular localization of mTHPC were examined using the doxorubicin selected MCF-7/DXR human breast cancer cells, expressing P-glycoprotein (P-gp), and the wild-type parental cell line, MCF-7. No significant difference in mTHPC accumulation was observed between the two cell lines up to 3 h contact. The photodynamic activity of mTHPC, measured 24 h after irradiation with red laser light (lambda=650 nm), was significantly greater in MCF-7/DXR as compared to MCF-7 cells. A light dose of 2.5 J cm(-2) inducing 50% of cytotoxicity in MCF-7, resulted in 85% cytotoxicity in MCF-7/DXR. The presence of P-gp inhibitors SDZ-PSC-833 and cyclosporin A did not modify the mTHPC-induced cytotoxicity. The difference in intracellular mTHPC distribution pattern between two cell lines may contribute to different photocytotoxicity. Our results indicate that mTHPC mediated PDT could be useful in killing cells expressing MDR phenotype.  相似文献   

14.
Reduced bladder capacity is a major side effect for patients receiving photodynamic therapy (PDT) for bladder cancer. A rat bladder model has been developed to address both the vascular and tissue effects of the photodynamic treatment of the urinary bladder. Bladders were exteriorized and positioned in a plexiglass tissue bath. Effects on microvasculature were assessed during PDT of the bladder by recording luminal diameter changes in arterioles and venules. Animals receiving Photofrin II (10 mg kg-1) 30 min prior to PDT scored a statistically significant reduction in the diameter of the red blood cell column in the vessels, whereas administration of Photofrin II 48 h prior to PDT was ineffective. Morphological changes included significant endothelial and vascular myocyte damage in the 30 min PDT group alone. Among the other tissue components, the mucosal lining was minimally affected and the response of the muscularis was highly variable. Smooth muscle cell changes ranged from mild contraction to frank necrosis with many of the affected cells located near the altered vascular beds. These data suggest that the clinical symptoms of reduced bladder capacity can be accounted for by vascular damage and myocyte sensitivity. Further refinements in the Photofrin II and light doses used in therapy may reduce bladder complications and allow for better management of bladder cancer.  相似文献   

15.
Our approach to examine the mechanism(s) of action for photodynamic therapy (PDT) has been via the generation of PDT-resistant cell lines. In this study we used three human cell lines, namely, human colon adenocarcinoma (HT29), human bladder carcinoma and human neuroblastoma. The three photosensitizers used were Photofrin, Nile Blue A and aluminum phthalocyanine tetrasulfonate. The protocol for inducing resistance consisted of repeated in vitro photodynamic treatments with a photosensitizer to the 1-10%-survival level followed by regrowth of single surviving colonies. Varying degrees of resistance were observed. The three induced variants of the HT29 cell line were the most extensively studied. Their ratios of increased survival at the LD90 level range between 1.5- and 2.62-fold more resistant.  相似文献   

16.
We have examined the possible role of the stress-activated JNK and p38 protein kinases in cellular sensitivity following Photofrin-mediated photodynamic therapy (PDT). Previously we reported that immortalized Li-Fraumeni syndrome (LFS) cells are more resistant to Photofrin-mediated PDT compared to normal human fibroblasts (NHF) at equivalent cellular Photofrin levels. In the current work we report that Photofrin-mediated PDT increased the activity of JNK1 and p38 within 30 min in both cell types. However, the increased activity of JNK1 and p38 was transient in the sensitive NHF cells and returned back to near basal levels by 3 h after PDT. In contrast, the resistant LFS cells exhibited a more prolonged activation of JNK and p38, which lasted for at least 11 h and 7 h after PDT, respectively. Blocking of the p38 pathway in LFS cells by transient infection with a recombinant adenovirus expressing a dominant negative mutant of p38 or in HeLa cells by stable transfection with a dominant negative mutant of p38 had no effect on cell survival following PDT. These data suggest that although Photofrin-mediated PDT is able to induce JNK1 and p38 in human cells, the p38 pathway alone does not play a major role in the sensitivity of LFS cells to Photofrin-mediated PDT.  相似文献   

17.
18.
Photodynamic Therapy of 9L Gliosarcoma with Liposome-Delivered Photofrin   总被引:5,自引:1,他引:5  
Abstract— The effect of Photofrin encapsulated in a liposome delivery vehicle for photodynamic therapy (PDT) of the 9L gliosarcoma and normal rat brain was tested. We hypothesized that the liposome vehicle enhances therapeutic efficacy, possibly by increasing tumor tissue concentration of Photofrin. Male Fisher rats bearing a 9L gliosarcoma were treated 16 days after intracerebral tumor implantation with either Photofrin in dextrose (n = 5) or Photofrin in liposome (n = 6). Nontumor-bearing animals were treated with Photofrin delivered either in dextrose (n = 4) or liposome (n = 4) vehicle. Tissue concentrations of Photofrin delivered either in dextrose (n = 4) or liposome (n = 4) vehicle were measured in tumor, brain adjacent to tumor and in normal brain tissue. Photofrin was administered (intraperitoneally) at a dose of 12.5 mg/kg and PDT (17 J/cm2 of 632 nm light at 100 mW/cm2) was performed 24 h after Photofrin administration. Brains were removed 24 h after PDT and stained with hematoxylin and eosin for analysis of cellular damage. The PDT using Photofrin in the liposome vehicle caused significantly more damage to the tumor ( P < 0.001) than did PDT with Photofrin in dextrose. The PDT of tumor with Photofrin delivered in liposomes caused a 22% volume of cellular necrosis, while PDT of tumor with Photofrin delivered in dextrose caused only scattered cellular damage. Photofrin concentration in tumors was significantly higher ( P = 0.021) using liposome (33.8 ± 18.9 μg/g) compared to dextrose delivery (5.5 ± 1.5 μg/g). Normal brain was affected similarly in both groups, with only scattered cellular necrosis. Our data suggest that the liposome vehicle enhances the therapeutic efficacy of PDT treatment of 9L tumors.  相似文献   

19.
The relative contribution, to cell death, of photodynamic damage to respiratory proteins (known targets of photodynamic therapy with many photosensitizers) and other cellular sites was examined. The models were a human ovarian carcinoma cell line 2008, and its mitochondrial DNA-deficient derivative ET3, which lacks several key respiratory protein subunits. Phototoxicity was compared in the two cell lines with photosensitizers that localized to different cellular compartments. Photosensitizers included Victoria Blue BO (VBBO; mitochondria); Photofrin with a short incubation, (plasma membrane) or a long incubation (intracellular membranes including mitochondria); and Nile Blue A (NBA; lysosomes). Photosensitizer content and localization did not differ between the 2008 and ET3 cells. For sensitizers without a primary mitochondrial localization (NBA and Photofrin with a short incubation), there was no significant difference between 2008 and ET3 toxicity. Consistent with a mitochondrial localization of VBBO and independence from respiratory-chain damage, ET3 cells were less susceptible than 2008 to both dark- and light-activated VBBO-mediated damage. Statistical analysis of the data demonstrated minimal photobleaching of VBBO and a significant difference between the phototoxicity curves of ET3 and 2008. For Photofrin with a long incubation, dark- and phototoxicity effects were similar for both cell lines. Inhibition of respiratory enzymes is thus only a minor component of Photofrin-mediated (long incubation) phototoxicity in these cell lines and is overwhelmed by more significant damage elsewhere, whereas it is a major but not the exclusive element of death mediated by VBBO.  相似文献   

20.
We have demonstrated that lung‐sparing surgery with intraoperative photodynamic therapy (PDT) achieves remarkably extended survival for patients with malignant pleural mesothelioma (MPM). Nevertheless, most patients treated using this approach experience local recurrence, so it is essential to identify ways to enhance tumor response. We previously reported that PDT transiently activates EGFR/STAT3 in lung and ovarian cancer cells and inhibiting EGFR via erlotinib can increase PDT sensitivity. Additionally, we have seen higher EGFR expression associating with worse outcomes after Photofrin‐mediated PDT for MPM, and the extensive desmoplastic reaction associated with MPM influences tumor phenotype and therapeutic response. Since extracellular matrix (ECM) proteins accrued during stroma development can alter EGF signaling within tumors, we have characterized novel 3D models of MPM to determine their response to erlotinib combined with Photofrin‐PDT. Our MPM cell lines formed a range of acinar phenotypes when grown on ECM gels, recapitulating the locally invasive phenotype of MPM in pleura and endothoracic fascia. Using these models, we confirmed that EGFR inhibition increases PDT cytotoxicity. Together with emerging evidence that EGFR inhibition may improve survival of lung cancer patients through immunologic and direct cell killing mechanisms, these results suggest erlotinib‐enhanced PDT may significantly improve outcomes for MPM patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号