首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Nd‐doped lutetium orthovanadate Nd:LuVO4 crystal has been grown using a modified Czochralski method. The thermal properties of this crystal have been studied by measuring the thermal expansion, specific heat and thermal diffusivity. The thermal expansion coefficients are α11 = 1.7 × 10‐6, α22 = 1.5 × 10‐6 and α33 = 9.1 × 10‐6/K in the temperature range of 298–573 K along the three respective crystallographic axes. The specific heat is almost linear and increases from 0.442 to 0.498 Jg‐1K‐1 in the measured temperature range. The thermal diffusivity is anisotropic and decreases with increasing temperature from 295 to 548 K. At room temperature the calculated thermal conductivities κ11 and κ33 are 7.96 and 9.77 Wm‐1K‐1, respectively. These thermal parameters of Nd:LuVO4 crystal have indicated that it is an excellent candidate laser material. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
CuGe2P3 is a p‐type semiconductor with zincblende structure. Ge3P4 is soluble up to 35 mole% in CuGe2P3. Lattice parameters of CuGe2P3 + 0.2 Ge3P4 have been determined at elevated temperatures from room temperature to 873 K using the x‐ray diffraction profiles (111), (200), (220), (311), (222), (400), (331), (420), (422) and (511) obtained from high temperature diffractometer. It is found that the lattice parameter increases linearly from 0.53856 nm at RT to 0.54025 nm at 873 K. The data on lattice parameter is used and coefficient of lattice thermal expansion of CuGe2P3 +0.2 Ge3P4 was determined at different temperatures. It is found that the coefficient of thermal expansion of CuGe2P3 +0.2 Ge3P4 is 5.48 x 10‐6 K‐1 and is independent of temperature. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Two mol% Y2O3-PSZ precursor powders for dental applications were synthesized using ZrOCl2·8H2O and Y(NO3)3·6H2O by a co-precipitation process at pH 7 and 348 K for 2 h. The thermal properties and phase transformation of 2Y-PSZ nanocrystallite powder have been investigated using a thermogravimetric and difference scanning calorimeter (TG/DSC), Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction and dilatometric analysis. Two weaker broad exothermic peaks appear at around 618 and 718 K were explored in DSC results. The TG analysis shows that minor weight loss occurs from 298 to 348 K, followed by three major weight losses at 610, 630 and 773 K. Calcinated at 773 and 1273 K, the crystallized phases are composed of the major phase of tetragonal ZrO2 and minor phase of monoclinic ZrO2. TEM reveals that the tetragonal ZrO2 with an average size of less than 20.0 nm is mainly aggregated into the secondary aggregates with a size of small than 30.0 nm. The sintering curve of the compact pellet has a significant shrinkage with a linear rate of 18.5% at about 1341 K. Maximum densification rate happened at 1473 K, demonstrating the good low temperature sinterability for dental applications.  相似文献   

4.
The X-ray studies of the tetragonal YBa2Cu3O7−x compound are performed at different temperatures from 400 to 90 K and the temperature variation of the thermal expansion coefficients and the Debye characteristic temperature is determined. The anisotropy of thermal expansion is investigated. It is found that the two dynamical characteristics monotonously decrease with temperature lowering whereas for the superconducting orthorhombic modification their temperature dependences are anomalous. The mean thermal expansion coefficient as well as the overall Debye temperature for the tetragonal phase are smaller than those for the orthorhombic one.  相似文献   

5.
Thermal expansion of the monoclinic nonlinear optical crystal BiB3O6 (bismuth triborate) was measured by dilatometry within the temperature range from 173 K to 573 K using single crystal samples of dimensions ∼7 x 7 x 8 mm3. The four independent tensor coefficients are given and the calculated loci of zero thermal expansion of BiB3O6 are related to the loci of phase matching for second harmonic generation. Characteristic features of the crystal structure are taken to discuss the marked anisotropy of thermal expansion of BiB3O6.  相似文献   

6.
The temperature dependent structural phase transition from the tetragonal chalcopyrite like structure to the cubic sphalerite like structure in CuInSe2 was investigated by in‐situ high temperature synchrotron radiation X‐ray diffraction. The data were collected in 1K steps during heating and cooling cycles (rate 38 K/h). The Rietveld analysis of the diffractograms led us to determine the temperature dependence of the lattice parameters, including the tetragonal deformation, |1‐η|, and distortion |u‐¼| (η=c/2a, a and c are the tetragonal lattice constant; u is the anion x‐coordinate). The thermal expansion coefficients αa and αc of the tetragonal lattice constant which are related to the linear thermal expansion coefficient αL were obtained, as were αa of the cubic lattice constant, also αu and αη. The transition temperature is clearly identified via a strong anomaly in αL. The temperature dependence of the anion position parameter was found to be rather weak, nearly αu∼0, whereas αη increases slightly. However, both increase strongly when approaching to within 10 K of the transition temperature (the critical region) and |1‐η| as well as |u‐¼| go to zero with |T‐Ttrans|0.2 approaching the phase transition. The cation occupancy values, derived from the Rietveld analysis, remain constant below the critical region. Close to the transition temperature, the number of electrons at the Cu site increases with a dercrease in the number of electrons at the In site with increasing temperature, indicating a Cu‐In anti site occupancy, which is assumed to be the driving force of the phase transition. At the transition temperature 67% of Cu+ were found to occupy the Me1 site with a corresponding 67% of In3+ at the Me2 site. Although full disorder is reached with 50%, this level seems to be high enough that the phase transition takes place. The order parameter of the phase transition, goes with |T‐Ttrans|β to zero with the critical exponent β=0.35(7) which is in good agreement to the critical exponent β=0.332 calculated for order‐disorder transitions according to the Ising model. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Formation of Ag2Te thin films from room temperature (300 K) solid state reaction of Ag and Te thin film couples is investigated. Rutherford Backscattering Spectrometry (RBS) studies confirmed the complete miscibility of the couples and the stoichiometry of the resulting Ag2Te. Structural analysis by Transmission Electron Microscopy (TEM) showed a fine‐grained structure with monoclinic and orthorhombic phases. Annealing at high temperatures resulted in the growth of giant crystallites with monoclinic phase at random sites. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Differential scanning calorimetry (DSC) and X‐ray diffraction measurements have been performed on cesium sulfamate CsNH2SO3 single crystal. Two distinct endothermic peaks in the DSC curves are observed at 330 and 436 K. It is pointed out that the peak at 330 K is attributed to the structural phase transition, and the other peak at 436 K is associated with the thermal decomposition of the crystal. The structures in room‐ and high‐temperasture phases are determined, and the space group of the sample crystal is found to change from monoclinic P 21/c to orthorhombic Pnma. The structure of the room‐temperature phase consists of two different types of N‐H···O hydrogen bond, but in the high‐temperature phase there is no specific hydrogen bond between the NSO3 pseudo‐tetrahera. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Kernite Na2B4O6(OH)2·3H2O dehydration in air at high temperature and in vacuum at room temperature has been studied. It was found that kernite easily dehydrates forming a new phase‐I both on heating and in vacuum. The chemical formula Na2B4O6(OH)2·1.5H2O of the new phase‐I has been estimated on the basis of thermogravity analysis. It is triclinic with the unit cell parameters a = 7.047(8), b = 8.76(1), c = 13.08(2) Å, α = 93.40(9), β = 95.32(9), γ = 90.28(9)° changing slightly on pressure reduction. Due to the relatively low temperature (353 K) and reversibility of the kernite ⟷ phase‐I transition an anion of the new phase‐I likely consists of the same chains [B4O6(OH)2]2– like in kernite structure. The high anisotropy of kernite thermal expansion was explained by approaching of NaO chains due to the initial removing of water molecules from kernite crystal structure. The behaviour of the new phase‐I at low temperatures in vacuum was also investigated. A formation of an additional new phase II has been detected at the temperature of 93 K. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Investigations of the thermal expansion of (CuAlTe2)1–x(CuAlSe2)x solid solutions in the temperature range from 100 to 800 K have been carried out for the first time. It has been demonstrated that the thermal expansion coefficient αL grows considerably in the temperature range from 100 to 300 K, whereas the temperature dependence above 300 K is rather weak. The isotherms of composition dependence of the thermal expansion coefficient αL for 100, 293, 500 and 800 K were constructed, and it was found that linear relations could express them. The Debye temperatures θD , the average mean‐square dynamic displacements , the average root‐mean‐square amplitudes of thermal vibration RMS , the anion position parameter u using S. C. Abrahams & J. L. Bernstein (uAB ) and J. E. Jaffe & A. Zunger (uJZ ) models were calculated. The composition dependence of microhardness H using the phenomenological theory was also calculated, and it was discovered that this dependence has a non‐linear character with a maximum of 383 kg/mm2 at x=0.67. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The growth morphology of MMTG (manganese mercury thiocyanate glycol monomethyl ether, MnHg(SCN)4(C3H8O2)) crystal was indexed according to the X‐ray powder diffraction spectroscopy. The density and Mohs hardness were determined at room temperature. The specific heat of the crystal is 458.6 J.mol‐1K‐1 at 300 K. The thermal expansion coefficient (TEC) along the a, b and c axis is a1=6.89 × 10‐5 K‐1, a2=6.78 × 10‐5 K‐1 and a3=2.08 × 10‐5 K‐1, respectively. The sameness and difference of the TECs are interpreted on the basis of crystal structure. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The crystal chemistry of Rb‐Cs boroleucites has been studied by means of X‐ray powder diffraction at room and elevated temperatures. The cubic I‐43d → cubic Ia3d phase transition was investigated using a series of samples prepared by solid‐state reaction along the pseudobinary system RbBSi2O6 ‐ CsBSi2O6. The Rietveld refinement of the structures of Rb1‐xCsxBSi2O6 solid solutions (x = 0.2, 0.4, 0.6, 0.8) demonstrates that the solutions with a high Rb content crystallise in the cubic I‐43d space group, and the boroleucites with a considerable Cs content have Ia3d symmetry. Rb can substitute Cs in a wide range of compositions. Within a narrow range of x = 0.5 ‐ 0.6 immiscibility was revealed. Under Rb‐Cs substitution the cubic lattice parameter, the (Rb,Cs)‐O distances, and the angles between tetrahedra of the I‐43d phase change clearly, while those of the Ia3d phase change slightly. The HTXRD data shows that the I‐43d phase transforms into a Ia3d phase on heating analogously to a change of the composition. As the Cs content increases the transition temperature decreases. The low temperature I‐43d phase shows a higher thermal expansion than the high temperature Ia3d phase. © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

13.
The plastic deformation of CsI crystals of three crystallographic orientations 〈100〉. 〈110〉. and 〈111〉 at temperatures from 423 to 773 K (0.5 to 0.86Tm) and strain rates from 2 × 10−3 to 10−5 s−1 is studied. Four-stage stres-strain curves were found, three stages being more and more distinct with an increase in temperature up to 623 K above which stage III prevails. For all the temperatures, strain rates and oreintations studied the superplasticity features (jerky flow, deformation localization, active dynamical recovery etc.) were observed. The thermal activatoin analysis has shown that the rate of high temperature deformation of CsI is controlled by dislocation climb limited in its turn by mobility of cation vacancies (quasiviscous creep).  相似文献   

14.
Ca4YO(BO3)3 (YCOB) crystals have been grown using the vertical Bridgman method. The thermal properties of YCOB were measured for the first time to our knowledge. The specific heat is 729.7 J/kg K at 373K. The average thermal expansion coefficients along the a, b and c axes are 9.9 × 10‐6 /K, 8.2 × 10‐6 /K and 12.8 × 10‐6 /K, respectively, in the temperature range of 293‐1173 K. The thermal conductivities along the a, b and c axes are 1.83 W/mK, 1.72 W/mK and 2.17 W/mK at 373 K. The anisotropy in the measured thermal conductivities of YCOB is consistent with the experimental results of the thermal expansion. The SHG of a Nd: YAG laser was compared with that of a KDP crystal. The effective nonlinear coefficients (deff) of YCOB in type I phase matching directions of (θ, ϕ) = (66.3°, 143.5°) and (65.9°, 36.5°) were estimated to be 1.45 pm/V and 0.91 pm/V, respectively. The bulk damage threshold was observed as 85 GW/cm2 for single pulse of a Nd:YAG laser with 10 ns pulseduration.  相似文献   

15.
Nd:YVO4 crystal has been grown by Czochralski method. The data of thermal expansion and specific heat have been measured. The thermal expansion coefficients along a- and c-axis are a1 = 2.2 x 10-6 /K, and a3 = 8.4 x 10-6 /K respectively. The specific heat is 24.6 cal/mol x K at 330 K. The large anisotropy along c- and a-axis of thermal expansion coefficients is explained by the structure of YVO4 crystal. 921 mW output laser at 1.06 mikrom has been obtained with a 3 mm x 3 mm x 1mm crystal sample when pumped by 1840 mW cw laser diode, and the slope efficiency is 55.5%.  相似文献   

16.
Nano‐crystalline silver oxide films were deposited on glass and silicon substrates held at room temperature by RF magnetron sputtering of silver target under different oxygen partial pressures. The influence of oxygen partial pressure on the structural, morphological, electrical and optical properties of deposited films was investigated. Varying oxygen partial pressure during the sputter deposition leads to changes of mixed phase of Ag2O and Ag to a single phase of Ag2O and to AgO. The X‐ray diffraction and X‐ray photoelectron spectroscopy results showed the formation of single phase Ag2O with cubic structure at oxygen partial pressures of 2x10‐2 Pa while the films deposited at higher oxygen partial pressure of 9x10‐2 Pa showed the formation of single phase of AgO with monoclinic structure. Raman spectroscopic studies on the single phase Ag2O showed the stretching vibration of Ag‐O bonds. Single‐phase Ag2O films obtained at oxygen partial pressure of 2x10‐2 Pa were nano‐crystalline with crystallite size of 20 nm and possessed an electrical resistivity of 5.2x10‐3 Ωcm and optical band gap of 2.05 eV. The films deposited at higher oxygen partial pressure of 9x10‐2 Pa were of AgO with electrical resistivity of 1.8x10‐2 Ωcm and optical band gap of 2.13 eV. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The room temperature crystal data, Debye temperature, dark and photoelectrical properties of the Bridgman method grown Tl2InGaTe4 crystals are reported for the first time. The X‐ray diffraction technique has revealed that Tl2InGaTe4 is a single phase crystal of tetragonal body‐centered structure belonging to the space group. A Debye temperature of 124 K is calculated from the results of the X‐ray data. The current‐voltage measurements have shown the existence of the switching property of the crystals at a critical voltage of 80 V. The dark electrical resistivity and Hall effect measurements indicated the n ‐type conduction with an electrical resistivity, electron density and Hall mobility of 2.49×103 Ω cm, 4.76×1012 cm–3 and 527 cm2V–1s–1, respectively. The photosensitivity measurements on the crystal revealed that, the variation of photocurrent with illumination intensity is linear, indicating the domination of monomolecular recombination at room temperature. Moreover, the spectral distribution of the photocurrent allowed the determination of the energy band gap of the crystal studied as 0.88 eV. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Ingots of the CuAlxGa1‐xSe2 (0 ≤ x ≤ 1) alloys system were prepared by direct fusion of the stoichiometric mixture of the elements. The analysis of X‐ray Powder Diffraction data showed the presence of one single phase with chalcopyrite tetragonal structure at room temperature for all the studied compositions. The lattice parameters, a and c, and the bond lengths were calculated. The phase transition temperatures were obtained by the onset method from Differential Thermal Analysis measurements performed on samples sealed in evacuated quartz ampoules. Fusion or transition enthalpies were determined from the area of the corresponding DTA peak. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
GaSe single crystals grown by Bridgman method have been doped by ion implantation technique. The samples were bombarded in the direction parallel to c‐axis by Si ion beam of about 100 keV to doses of 1 × 1016 ions/cm2 at room temperature. The effects of Si implantation with annealing at 500 and 600 °C on the electrical properties have been studied by measuring the temperature dependent conductivity and photoconductivity under different illumination intensities in the temperature range of 100–320 K. It is observed that Si implantation increases the room temperature conductivity 10−7 to 10−3 (Ω‐cm)−1 depending on the post annealing temperature. The analysis of temperature dependent conductivity shows that at high temperature region above 200 K, the transport mechanism is dominated by thermal excitation in the doped and undoped GaSe samples. At lower temperatures, the conduction of carriers is dominated by variable range hopping mechanism in the implanted samples. Annealing of the samples at and above 600 °C weakens the temperature dependence of the conductivity and photoconductivity. This indicates that annealing of the implanted samples activates Si‐atoms and increases structural deformations and stacking faults. The same behavior was observed from photoconductivity measurements. Hence, photocurrent‐illumination intensity dependence in the implanted samples obeys the power low IpcΦn with n between 1 and 2 which is an indication of continuous distribution of localized states in the band gap. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The structural, electrical and optical properties of AgGa(Se0.5S0.5 )2 thin films deposited by using the thermal evaporation method have been investigated as a function of annealing in the temperature range of 450–600 °C. X‐ray diffraction (XRD) analysis showed that the structural transformation from amorphous to polycrystalline structure started at 450 oC with mixed binary phases of Ga2Se3, Ga2S3, ternary phase of AgGaS2 and single phase of S. The compositional analysis with the energy dispersive X‐ray analysis (EDXA) revealed that the as‐grown film has different elemental composition with the percentage values of Ag, Ga, Se and S being 5.58, 27.76, 13.84 and 52.82 % than the evaporation source powder, and the detailed information about the stoichometry and the segregation mechanisms of the constituent elements in the structure have been obtained. The optical band gap values as a function of annealing temperature were calculated as 2.68, 2.85, 2.82, 2.83, and 2.81 eV for as‐grown, annealed at 450, 500, 550, and 600 °C samples, respectively. It was determined that these changes in the band gap are related with the structural changes with annealing. The temperature dependent conductivity measurements were carried out in the temperature range of 250‐430 K for all samples. The room temperature resistivity value of as‐grown film was found to be 0.7x108 (Ω‐cm) and reduced to 0.9x107 (Ω‐cm) following to the annealing. From the variation of electrical conductivity as a function of the ambient temperature, the activation energies at specific temperature intervals for each sample were evaluated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号