首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
《Polyhedron》2001,20(15-16):2003-2009
The syntheses of the hexadentate ligand 2,13-bis(acetamido)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane (L2) and its complexes with Ni(II) and Cu(II) are described. Crystal structures of H2L2·2HClO4 (1), [Ni(L2)](ClO4)2 (2) and [Cu(L2)](ClO4)2 (3) are reported. The two pendant acetamide groups of the macrocyclic ligand 1 are trans to each other and the absolute configuration is a trans-IV in the solid state. The crystal structures of 2 and 3 revealed an axially elongated octahedral geometry with four nitrogen atoms of the macrocycle and two oxygen atoms of the pendant acetamide groups at the axial positions. The nickel(II) and copper(II) ions are located at an inversion center. The electronic spectra and electrochemical behaviors of the complexes are significantly affected by the presence of the pendant arms.  相似文献   

2.
Ethylene cross-bridged tetraazamacrocycles are known to produce kinetically stable transition metal complexes that can act as robust oxidation catalysts under harsh aqueous conditions. We have synthesized ligand analogs with single acetate pendant arms that act as pentadentate ligands to Mn, Fe, Co, Ni, Cu, and Zn. These complexes have been synthesized and characterized, including the structural characterization of four Co and Cu complexes. Cyclic voltammetry demonstrates that multiple oxidation states are stabilized by these rigid, bicyclic ligands. Yet, redox potentials of the metal complexes are modified compared to the “parent” ligands due to the pendant acetate arm. Similarly, gains in kinetic stability under harsh acidic conditions, compared to parent complexes without the pendant acetate arm, were demonstrated by a half-life seven times longer for the cyclam copper complex. Due to the reversible, high oxidation states available for the Mn and Fe complexes, the Mn and Fe complexes were examined as catalysts for the bleaching of three commonly used pollutant model dyes (methylene blue, methyl orange, and Rhodamine B) in water with hydrogen peroxide as oxidant. The efficient bleaching of these dyes was observed.  相似文献   

3.
Abstract

In our studies of the stability constants of metal complexes, we have investigated a number of macrocyclic ligands with pendant donor groups. The ligands are characterized by the fact that they have nitrogen donors in the macrocyclic ring and oxygen or sulfur donors in the pendant arms. These ligands represent seven different macrocycles, and by varying the pendant donor groups, ten different ligands are indicated. The affinities of these ligands for fifteen metal ions will be described. The Fe(III) complex of triazanonane with o-hydroxypyridyl or o-hydroxybenzyl pendant donor groups are the most stable ferric complexes ever reported. The In(III) complex of triazacyclononane with pendant mercaptoethyl donor groups, is exceptionally stable. Also, the Ca(II) complex of DOTA probably has the highest stability of any calcium(II) complex. These, and other comparisons will be made on the basis of the thermodynamic stability constant data for the ligands described.  相似文献   

4.
Novel ruthenium(II)bpy complexes of the phenanthrimidazole-pendant cyclen and cyclam macrocyclic ligands were synthesized as inorganic host molecules. Inorganic host design was planned as a “complex ligand” form because of its tetraaza macrocyclic unit, which has the ability to coordinate to the metals. Photophysical properties and metal selectivity of inorganic hosts RuL1A and RuL2 complex ligands were investigated by UV-vis and fluorescence spectroscopy in aqueous medium. Among Ag(I), Li(I), Na(I), K(I), Cd(II), Cr(II), Fe(II), Hg(II), Ni(II), Pb(II), Zn(II), Cu(II), Mn(III), and Co(III) metal ions, Fe(II) addition causes spectral changes for both RuL1A and RuL2 complex ligands. Electrochemical studies were performed for RuL1B and also for cis-[Ru(bpy) 2 Cl 2 ] . Bimetallic complexes [[Ru(bpy)2([Ni(2-(4-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline])](ClO4)4, RuL1-NiA and [Ru(bpy)2([Ni(2-(4-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline])]Cl4, RuL1-NiB solid complexes were also obtained by the reaction of the RuL1B and Nickel(II).  相似文献   

5.
Two macrocyclic ligands based on cyclam with trans‐disposed N‐methyl and N‐(4‐aminobenzyl) substituents as well as two methylphosphinic (H2 L1 ) or methylphosphonic (H4 L2 ) acid pendant arms were synthesised and investigated in solution. The ligands form stable complexes with transition metal ions. Both ligands show high thermodynamic selectivity for divalent copper over nickel(II) and zinc(II)—K(CuL) is larger than K(Ni/ZnL) by about seven orders of magnitude. Complexation is significantly faster for the phosphonate ligand H4 L2 , probably due to the stronger coordination ability of the more basic phosphonate groups, which efficiently bind the metal ion in an “out‐of‐cage” complex and thus accelerate its “in‐cage” binding. The rate of CuII complexation by the phosphinate ligand H2 L1 is comparable to that of cyclam itself and its derivatives with non‐coordinating substituents. Acid‐assisted decomplexation of the copper(II) complexes is relatively fast (τ1/2=44 and 42 s in 1 M aq. HClO4 at 25 °C for H2 L1 and H4 L2 , respectively). This combination of properties is convenient for selective copper removal/purification. Thus, the title ligands were employed in the preparation of ion‐selective resins for radiocopper(II) separation. Glycidyl methacrylate copolymer beads were modified with the ligands through a diazotisation reaction. The separation ability of the modified polymers was tested with cold copper(II) and non‐carrier‐added 64Cu in the presence of a large excess of both nickel(II) and zinc(II). The experiments exhibited high overall separation efficiency leading to 60–70 % recovery of radiocopper with high selectivity over the other metal ions, which were originally present in 900‐fold molar excess. The results showed that chelating resins with properly tuned selectivity of their complexing moieties can be employed for radiocopper separation.  相似文献   

6.
Three new branched hexadentate amines (N6), 3,6-bis(2-pyridylmethyl)-3,6-diazaoctane-1,8-diamine (1), 3,7-bis(2-pyridylmethyl)-3,7-diazanonane-1,9-diamine (2) and 3,8-bis(2-pyridylmethyl)-3,8-diazadecane-1,10-diamine (3) have been synthesized. Subsequently, three novel Schiff base macrocyclic complexes containing a phenanthroline and two 2-pyridylmethylpendant arms have been prepared by template [1+1] cyclocondensation of 2,9-dicarboxaldehyde-1,10-phenanthroline and the branched hexadentate amines (13), in the presence of Mn(II) in methanol. These complexes have ligands with 18-, 19- and 20-membered hexaaza macrocycles and two 2-pyridylmethyl pendant arms (L1, L2 and L3, respectively). All the complexes have been characterized by elemental analysis and IR spectroscopy. The crystal structure of [MnL1](ClO4)2 · 3CH3CN was determined and indicates that in the solid state the complex adopts a slightly distorted hexagonal bipyramidal geometry with the Mn(II) ion located within a hexaaza macrocycle with the two 2-pyridylmethyl pendant arms coordinating in axial positions.  相似文献   

7.
Two molecular structures of the copper(II) complex, Cu(H(2)TETA), have been determined by X-ray crystallography. The Jahn-Teller distortion differs between the two structures; occurring either along the axis of the pendant acetate arms or across the macrocyclic ring. An analysis of deposited data from over one hundred copper(II) cyclam X-ray structures in the Cambridge Structural Database (CSD) reveals that Jahn-Teller distortion across the ring is highly unusual for such compounds in the solid state. Novel chelators based on the piperazino/side-bridged cyclam have been prepared and copper(II) complexes formed. The single crystal X-ray structures of two copper(II) complexes, with either an ester or acid N-pendant arm, have been determined and in both cases the pendant arm is bound to the metal centre.  相似文献   

8.
Kinetics of complex formation and stability constants of tetra-(2-hydroxpropyl) substituted cyclam (L3) and cyclen (L4) with copper(II) have been studied in aqueous solution at room temperature. These data are compared to the corresponding parent compounds (cyclam L1 and cyclen L2) in an attempt to define the effect of pendant arm upon kinetics and stability constants of the complexes. The kinetics were observed by stopped-flow measurements followed at multiwavelengths. These ligands were chosen to furnish information concerning effect of pendant groups and cavity size on the kinetics and stability of the complexes. Stopped-flow and spectrophotometric titration techniques were used for evaluation of the kinetics and stability constants, respectively. The apparent rate constants increase as CuL3?>?CuL4?>?CuL1?>?CuL2. Activation parameters and stability constants of the complexes were estimated. The effect of cavity size on the rate of reaction can be observed in CuL3?>?CuL4 and CuL1?>?CuL2 and the effect of pendant groups in CuL3?>?CuL1 and CuL4?>?CuL2. Mechanism of the complex formation reaction is proposed. The enhanced stability of the copper(II) complexes formed with L1 and L2 macrocyclic ligands is compared to those formed with analogous pendant arm species.  相似文献   

9.
Pd(II) complexes of acyclic (1,2;4,5) and macrocyclic (3,6-10) derivatives of 1,5-bis(oxazolines), are tested in the enantioselective allylic alkylation of racemic 1,3-diphenyl-3-acetoxyprop-2-ene (14) by dimethylmalonate anion to allyl malonate derivative 15. Conformation in solution of representative allyl Pd(II) complexes 12 and 13 is studied by 2D NMR and CD spectroscopy. 2D NMR data reveal loss of C2 symmetry of the ligands in Pd(II)allyl-bis(oxazoline) complexes. CD spectra indicate distortion of the bidentate ligand in the complex and a conformationally forced larger twist between two chromophores in the macrocyclic complex. Only moderate variation of enantioselectivity with the length and ring size of the ligand is observed, and a rationale offered.  相似文献   

10.
《Polyhedron》1999,18(23):3013-3018
The reaction of 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane (L1) with bromoacetic acid produced the macrocycle (L2=2,13-bis(2-carboxymethyl)-3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) in which two carboxymethyl groups are appended. The complexes [NiL2]·4H2O (2) and [CuL2]·4H2O (3) have been prepared and characterized. The two pendant carboxymethyl groups of the macrocyclic ligand are trans to each other, and the absolute configuration is a trans-III in the solid state. The crystal structures of 2 and 3 revealed an axially elongated octahedral geometry with four nitrogen atoms of the macrocycle and two oxygen atoms of the pendant arms at the axial positions. The nickel(II) and copper(II) ions are located at an inversion center. Macrocycle L2 reacts more rapidly with metal (II) ions than does L1. Spectra and electrochemical behaviors of the complexes are also discussed.  相似文献   

11.
The synthesis of new cyclam and cyclen derivatives (respectively L1 and L2), able to efficiently coordinate to Bi(III) are presented here. The two ligands bearing two different pendant arms (two-pycolyl and two (2-(2-hydroxyethoxy)ethyl)-2-aminoacetamide in trans position) were synthesized in the aim to obtain stable and water soluble complexes. The thermodynamic and kinetic of the formation of the corresponding complexes in aqueous solution were studied by means of NMR and potentiometric investigations. The fast kinetic of complexation and the high stability of the complexes are encouraging for further application with the alpha-emitting 213Bi isotope.  相似文献   

12.
Herein we report the synthesis and structural characterization of Mg(II), Ca(II), Sr(II) and Ba(II) complexes with bibracchial lariat ethers derived from 1,7-diaza-15-crown-5 and 1,7-diaza-12-crown-4 containing aniline or benzimidazole pendant arms. The solid state structures of most of them have been determined by using single crystal X-ray crystallography. A coordination number of seven was observed for the Mg(II) complexes in the solid state, while the Ca(II), Sr(II) and Ba(II) complexes are 8-, 9- and 11-coordinate, respectively. The Ca(II), Sr(II) and Ba(II) complexes show a syn conformation, with the two pendant arms of the ligand disposed on the same side of the macrocyclic mean plane. However, the Mg(II) complex with the largest ligand derived from 1,7-diaza-15-crown-5 containing benzimidazole pendants presents an anti conformation in the solid state. 1H and 13C NMR spectroscopy reveal that this conformation is maintained in acetonitrile solution.  相似文献   

13.
《Polyhedron》1999,18(8-9):1229-1234
We report the synthesis of a series of macrocyclic ligands based on N,N′,N″-1,4,7-triazacyclononane with pendant alkyne arms. N,N′,N″-tris-(3-prop-1-yne)-1,4,7-triazacyclononane (L) has three pendant alkyne arms while N-(4-but-2-yne)1,4,7-triazacyclononane (L′) and N-(5-pent-2-yne)-1,4,7-triazacyclononane (L″) each have a single pendant arm. The ligands form coordination complexes with Cu(II), Ni(II), Co(II) and Mo(0). The crystal structures of [CuL2′][PF6]2, [NiL2′][ClO4]2 and CuL″Cl2 are presented and discussed.  相似文献   

14.
A cross-bridged cyclam ligand bearing two N-carboxymethyl pendant arms (1) has been found to form a copper(II) complex that exhibits significantly improved biological behavior in recent research towards (64)Cu-based radiopharmaceuticals. Both the kinetic inertness and resistance to reduction of Cu-1 are believed to be relevant to its enhanced performance. To explore the influence of pendant arm length on these properties, new cross-bridged cyclam and cyclen ligands with longer N-carboxyethyl pendant arms, 2 and 4, and their respective copper(II) complexes have been synthesized. Both mono- as well as di-O-protonated forms of Cu-2 have also been isolated and structurally characterized. The spectral and structural properties of Cu-2 and Cu-4, their kinetic inertness in 5 M HCl, and electrochemical behavior have been obtained and compared to those of their N-carboxymethyl-armed homologs, Cu-1 and Cu-3. Only the cyclam-based Cu-1 and Cu-2 showed unusually high kinetic inertness towards acid decomplexation. While both of these complexes also exhibited quasi-reversible Cu(II)/Cu(I) reductions, Cu-2 is easier to reduce by a substantial margin of +400 mV, bringing it within the realm of physiological reductants. Similarly, of the cyclen-based complexes, Cu-4 is also easier to reduce than Cu-3 though both reductions are irreversible. Biodistribution studies of (64)Cu-labeled 2 and 4 were performed in Sprague Dawley rats. Despite comparable acid inertness to their shorter-armed congeners, both longer-armed ligand complexes have poorer bio-clearance properties. This inferior in vivo behavior may be a consequence of their higher reduction potentials.  相似文献   

15.
Abstract

The addition of nitromethane anion to the C=N group of polyalkyl-1,4,8,11-tetraazacyclotetradeca-4, 11-dienenickel(II) diperchlorate gave Ni(II) complexes of new macrocyclic ligands containing a pendant 5-nitromethyl group. Variable temperature (80–290 K) magnetic susceptibilities were determined for the paramagnetic monoperchlorates and the diamagnetic square-planar diperchlorates. Conformations of the nitromethyl groups in the macrocyclic ligands were established on the basis of 1H NMR evidence.  相似文献   

16.
Two Ni(II) complexes, [Ni(dmoTSCH)Cl] (1) and [Ni(dmoPhTSCH)Cl] (2) of the tridentate thiosemicarbazone ligands diacetylmonooxime thiosemicarbazone (dmoTSCH2) and diacetylmonooxime (4-phenyl)thiosemicarbazone (dmoPhTSCH2) have been synthesized. X-ray crystal structure of [Ni(dmoTSCPhTSCH)Cl] (2) indicates that the Ni(II) assumes a square planar geometry in the complexes, with the ligand coordinated in a monoanionic N,N,S donor mode and the fourth coordination position of Ni(II) is occupied by a chloride ion. Cyclic and differential pulse voltammetric experiments suggest that the Ni(II) complexes can undergo a two electron reduction at about ?1.0V. It is shown that the Ni(II) complexes in DMF or DMSO solutions can mimic CO-dehydrogenase activity by oxidizing CO to CO2 in presence of a base like NaOAc and a sacrificial electron acceptor like methyl viologen and the colour of the resultant MV.+ can be used to monitor the reaction.  相似文献   

17.
A new series of macrocyclic diamides with carboxyl, pyridyl and picolinate pendant arms have been synthesized and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, Cd2+, Pb2+ in water were determined. Complexes with a stoichiometry of 1 : 1 (M: L) were found for all ligands with the exception of 15-membered crown ethers with one pendant carboxyl or pyridine group. The ligand containing two picolinate backbone groups exhibits the highest values of the stability constants for all studied cations (logβML?=?12.5–15.7). X-ray study of free ligands showed that the introduction of benzene and amide fragments into the macrocyclic moiety provides a flatten open structure of the ligand. The crystallographic analysis of Cu2+ and Zn2+ complexes revealed the external coordination of the metal atom by amine N atoms of the macrocycle and heteroatoms of the pendant groups.  相似文献   

18.
The syntheses of mixed oxygen-nitrogen donor macrocycles incorporating two or three pendant carboxylic acid groups are described. Potentiometric titrations in water (I = 0.1; KNO3) at 25°C have been used to determine the stability constants for the 1: 1 (metal:ligand) complexes of Co(II). Ni(II), Cu(II), Zn(II), and Cd(II). The constants obtained are compared with the previously determined values for the corresponding complexes of the unsubstituted macrocyclic precursors. The results of these studies indicate that each carboxylate function participates in binding to the central metal. For some metal-ion/ligand systems there is evidence that ring size effects influence the overall stability patterns and that, in such cases, both the ether oxygens as well as the tertiary amines of the macrocyclic rings appear to bind to the metal.  相似文献   

19.
The synthesis and characterization of amido-amine cyclam based metal complexes is described. A novel tetraazamacrocycle ligand precursor (Li2[1,8-Bn2-1,4,8,11-tetraazacyclotetradecane], Li2Bn2cyclam, 2) is reported. Reactions of 2 with MCl4(THF)2 afforded M(Bn2cyclam)Cl2 (M = Zr 3, Hf 4). The two complexes show trigonal prismatic metal coordination geometries in the solid-state molecular structures. The cross-bridged cyclam 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-H2cyclam 5) was used to prepare the lithiated ligand precursor (CB-Li2cyclam 6) and (CB-(Me3Si)2cyclam 7). M(CB-cyclam)Cl2 (M = Zr 8, Hf 9) were synthesized from reactions of MCl4(THF)2 with 6. The structures of 3 and 4 are compared with those of zirconium and hafnium complexes derived from cyclam and unsaturated tetraazamacrocyclic ligands.  相似文献   

20.
Abstract

Acid dissociation constants for two conformational isomers of dicyclohexylcyclam, cis-anti-cis, (P) and cis-syn-cis, (N) have been determined at 25, 35 and 40°C, and thermodynamic data are estimated. It was found that (N) shows very different behaviour from (P). Stability constants of (P) and (N) toward Ni(II), Cu(II) and Zn(II) have been determined by pH-titration at 25°C by using a ligand exchange reaction. It is found that the (P) complex is more stable for Ni(II) and the (N) complex is more stable for Cu(II). Contributions of the cyclohexyl group to the macrocyclic effect (ME) have been also estimated by considering basicity corrections. It is found that substitution of the cyclohexyl group in cyclam increases ME only for the Ni(II) complex of (P).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号