首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A zinc oxide (ZnO) nanoarray (rod‐like nanostructure) was successfully synthesized through a low‐temperature aqueous solution and microwave‐assisted synthesis using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA) as raw materials, and using FTO glass as substrate. The effects of parameters in the preparation process, such as solution concentration, reaction temperature and microwave power, on the morphology and microstructure of ZnO nanoarray were studied. Phase structure and morphology of the products were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that hexagonal wurtzite structure ZnO nanoarray with good crystallization could be prepared through a low‐temperature solution method. When the concentration of the mixed solution was 0.05 M, the reaction temperature was 95 °C, and the reaction time was 4 h, high‐density ZnO regular nanorods of 200 nm diameter were obtained. A possible mechanism with different synthesis methods and the influence of microwave processing are also proposed in this paper.  相似文献   

2.
Cu vanadate nanorods have been synthesized via the hydrothermal process using polymer polyvinyl pyrrolidone (PVP) as the surfactant. X‐ray diffraction (XRD) shows that the nanorods are composed of monoclinic Cu5V2O10 phase. Scanning electron microscopy (SEM) observation shows that the diameter and length of the nanorods are 50–300 nm and 3 μm, respectively. PVP concentration, hydrothermal temperature and duration time play essential roles in the formation and sizes of the Cu vanadate nanorods. A PVP‐assisted nucleation and crystal‐growth process is proposed to explain the formation of the Cu vanadate nanorods. Gentian violet (GV) is used to evaluate the photocatalytic activities of the Cu vanadate nanorods under solar light. The GV concentration clearly decreases with increasing irradiation time, and content of the Cu vanadate nanorods. GV solution with the concentration of 10 mg L−1 can be totally degraded under solar light irradiation for 4 h using 10 mg Cu vanadate nanorods. The Cu vanadate nanorods have good photocatalytic activities for the degradation of GV under solar light.  相似文献   

3.
MgO nanorods were grown by the thermal evaporation of Mg3N2 powders on the Si (100) substrate coated with a gold thin film. The MgO nanorods grown on the Si (100) substrate were a few tens of nanometers in diameter and up to a few hundreds of micrometers in length. MgO/SiO2 core‐shell nanorods were also fabricated by the sputter‐deposition of SiO2onto the MgO nanorods. Transmission electron microscopy (TEM) and X–ray diffraction (XRD) analysis results indicated that the cores and shells of the annealed core‐shell nanorods were a face‐centered cubic‐type single crystal MgO and amorphous SiO2, respectively. The photoluminescence (PL) spectroscopy analysis results showed that SiO2 coating slightly decreased the PL emission intensity of the MgO nanorods. The PL emission of the MgO/SiO2 core‐shell nanorods was, however, found to be considerably enhanced by thermal annealing and strongly depends on the annealing atmosphere. The PL emission of the MgO/SiO2 core‐shell nanorods was substantially enhanced in intensity by annealing in a reducing atmosphere, whereas it was slightly enhanced by annealing in an oxidative atmosphere. The origin of the PL enhancement by annealing in a reducing atmosphere is discussed with the aid of energy‐dispersive X‐ray spectroscopy analyses. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
SrMoO4 rose‐like and persimmon‐like structures were synthesized via microwave radiation‐assisted chelating agent method. The microstructure and morphology of the as‐prepared samples were analyzed by X‐ray diffraction and field‐emission scanning electron microscope. According to the experimental results, ethylenediaminetetraacetic acid, as an outstanding chelating agent, plays an important role in inducing the morphology evolution. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Well‐defined (three‐dimensional) 3‐D dandelion‐like Sb2S3 nanostructures consisted of numerous nanorods have been achieved via a facile citric acid‐assisted solvothermal process. The as‐prepared products were characterized by X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high‐resolution TEM (HRTEM), respectively. The influence factors of the formation of the hierarchical Sb2S3 nanostructures are discussed in details based on FESEM characterizations. By simply controlling the quantity of citric acid, the nucleation and growth process can be readily tuned, which brings the different morphologies and nanostructures of the final products. On the basis of a series of contrastive experiments, the aggregation‐based process and anisotropic growth mechanism are reasonably proposed to understand the formation mechanism of Sb2S3 hierarchical architectures with distinctive morphologies including nanorods, and dandelion‐like nanostructures. Charge‐discharge curves of the obtained Sb2S3 nanostructures were measured to investigate their electrochemical hydrogen storage behaviors. It revealed that the morphology played a key role on the hydrogen storage capacity of Sb2S3 nanostructure. The dandelion‐like Sb2S3 nanostructures exhibited higher hydrogen storage capacity (108 mAh g−1) than that of Sb2S3 nanorods (95 mAh g−1) at room temperature.  相似文献   

6.
Using the ionic liquid (IL), 1‐butyl‐3‐methyl‐imidazole tetrafluoroborate, and the precursor Cu7Cl4(OH)10·H2O, series of phase‐manipulable Cu‐based nanomaterials were synthesized by hydrothermal and microwave assisted routes, respectively. The structural characters of the as‐prepared CuO, CuO/Cu2O composites and pure Cu nanoparticles were investigated by XRD, SEM, TEM and HRTEM, and their surface photovoltaic properties were studied by surface photovoltage spectra. Via hydrothermal route Cu2+ ions were found to be reduced gradually into Cu+ and subsequently Cu0 with increasing the IL, and various phase ratio of CuO, Cu2O and Cu composite nanosheets and pure Cu nanoparticles were obtained. This implies that the IL could function as both a reductant in the oxygen‐starved condition and a template for the nanosheet products. The 1H‐NMR result of the IL supports it being a reductant. In microwave assisted route, however, only monoclinic single crystalline CuO nanosheets were obtained, which indicates the IL being a template only in oxygen‐rich condition. Therefore, the crystal phase, composition and morphology of the Cu‐based products could be controlled by simply adjusting the quantity of the IL and oxygen in solution routes. The molecular structure of the IL after oxidation reactions was investigated by 1H‐NMR and a possible reaction mechanism was proposed. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Several nickel phosphate molecular sieves were synthesized by conventional heating (CH) and microwave assisted hydrothermal (MAH). Nickel phosphate VSB‐5 (Versailles Santa Barbara‐5) was synthesized with conventional oven for 72 h or with microwave for 1 h and followed by conventional oven for 48 h in the presence of (2‐hydroxyethyl) trimethylammonium hydroxide as template. The phase transformation is observed by variation of CH time for the synthesis of nickel phosphate molecular sieves. At CH time of 24 h, the VSB‐5 crystal together α‐Ni2P2O7, Ni2P4O12 and unknown phases were produced but the pure VSB‐5 crystal was obtained in the CH time of 48 h or more. At high content of nickel, a mixture of α‐Ni2P2O7, Ni2P4O12 phases and small amount of VSB‐5 crystal, was achieved but pure VSB‐5 crystal was obtained in the lower level of nickel and other phases are vanished. An efficient ultrasonic‐assisted aging was found for the synthesis of nickel phosphate molecular sieve, in which by ultrasonic mixing of 0.5 h followed microwave of 1 h, the CH time is significantly reduced from 48 to 24 h. The morphology of nickel phosphate crystals is highly influenced in the presence of ethylene glycol as co‐solvent. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We report synthesis of α‐Fe2O3 (hematite) nanorods by reverse micelles method using cetyltrimethyl ammonium bromide (CTAB) as surfactant and calcined at 300 °C. The calcined α‐Fe2O3 nanorods were characterized by X‐ray diffraction (XRD), high‐resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The result showed that the α‐Fe2O3 nanorods were hexagonal structure. The nanorods have diameter of 30‐50 nm and length of 120‐150 nm. The weak ferromagnetic behavior was observed with saturation magnetization = 0.6 emu/g, coercive force = 25 Oe and remanant magnetization = 0.03 emu/g. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A facile microwave‐assistant route was developed for the synthesis of hybrid nanocrystals. Colloidal hybrid nanocrystals, Ag2S‐CdS, were prepared by using Ag2S nanocrystals and cadmium diethyldithiocarbamate as raw materials under microwave irradiation. The fast ion conductor, Ag2S nanocrystal, catalyzes the growth of CdS nano‐building blocks through a quasi solution‐solid‐solid mechanism. The ultraviolet‐visible absorption and photoluminescence spectra of the Ag2S‐CdS hybrid nanocrystals were investigated. One of the main advantages for this synthesis is the efficiency of dramatically reducing overall processing time. This report provides a new route for the growth of semiconductor hybrid nanocrystals based on Ag2S and may be extended to the preparation of other hybrid colloidal nanostructures.  相似文献   

10.
Cd2+‐doped ZnWO4 nanorods have been synthesized at 200 °C with microwave hydrothermal method, using Zn(NO3)2·6H2O, Na2WO4·2H2O and CdCl2 as raw materials. The effects of Cd2+ doping contents on the structure and morphology of the product were studied. The results show that Cd2+ doping into the crystal lattice of ZnWO4 nanopowder makes the powder orientationally grow along (010), (110) and (200) crystal planes to form the nanorods. The bigger Cd2+ doping contents are, the more obviously ZnWO4 nanorods grow. Meanwhile, the nanopowder is gradually transformed from monoclinic phase into the orthogonal phase. As the charge transference medium between the interfaces, Cd2+ restrains the combination of holes and electrons. After doped, the photocatalytic properties of ZnWO4 nanorods are increased. When Cd2+ doping content is 20%, the Cd2+‐doped ZnWO4 nanorods showed the highest degradation rate up to 98% in 2 h.  相似文献   

11.
The development of novel and high‐performance cathodes is a critical issue to be addressed in order to reduce Solid Oxide Fuel Cells (SOFCs) operation temperature to the 600‐800 °C range or less. The performance of CeO2‐based composite cathodes is very attractive to such operational temperatures. In this work, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and Ce0.8Sm0.2O1.9 (SDC) powders were synthesized by different synthesis methods and mechanically mixed to prepare LSCF‐SDC composite cathodes. Screen‐printed LSCF‐SDC/CGO/LSCF‐SDC symmetrical cells were sintered at 1150 °C for 4 h and characterized by electrochemical impedance spectroscopy in static air. X‐ray diffraction and scanning electron microscopy were employed to characterize the powders. Area specific resistance values of 0.72 and 2.77 Ω cm2 at 800 °C were found for composite cathodes containing SDC powder synthesized by modified Pechini and microwave‐assisted combustion methods, respectively. Furthermore, the activation energy of the composite cathode containing SDC derived from modified Pechini method is 1.18 eV, i.e., much lower than 1.73 eV, value determined for LSCF with SDC from microwave‐combustion method.  相似文献   

12.
The current work reports the fabrication of crystalline Bi2O3 nanorods on Pt‐coated Si substrates using trimethylbismuth and O2 as the bismuth and the oxygen sources, respectively, in the metalorganic chemical vapor deposition process. Their microstructures were characterized by scanning electron microscopy, X‐ray diffraction, and transmission electron microscopy. The obtained nanorods were crystalline, with their diameters in the range of 20–200 nm. The absence of tip‐nanoparticle and the presence of predeposited Bi2O3 layer indicated that the growth was dominated by a vapor‐solid process. The photoluminescence measurements of the Bi2O3 nanorods at room temperature exhibited an emission band peaked at around 422 nm. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Uniform shuttle‐like Sb2S3 nanorod‐bundles were synthesized via a polyvinylpyrrolidone (PVP) assisted solvothermal approach under alkaline condition, using antimony chloride (SbCl3) and thiourea (CH4N2S, Tu) as the starting materials in ethanol. The phase structure, composition and morphology of the product were characterized by means of X‐ray diffraction (XRD), energy dispersive X‐ray spectrometry (EDS), transmission electron microscopy (TEM), and high‐resolution transmission electron microscopy (HRTEM). XRD and EDS results confirm that the synthesized Sb2S3 nanorod‐bundles have an orthorhombic structure and an atomic ratio of 3:2 for S:Sb. TEM and HRTEM results show that the shuttle‐like Sb2S3 bundles are composed of nanorods with a size distribution of 20‐40 nm and growing along c‐axis. Furthermore, experiments under different reaction conditions were carried out and the mechanism for the growth of nanorod‐bundles was discussed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
CeO2 nanoparticles (CNPs), Co‐doped CeO2 nanoparticles (CCNPs) and Co‐doped CeO2 nanorods (CCNRs) were synthesized by simple co‐precipitation method and explored their sensing behaviour towards nitrobenzene. XRD and TEM analysis confirmed the presence of cubic fluorite structure of the CNPs, CCNPs and CCNRs. EDX analysis confirmed the presence of Cobalt in CeO2 nanorods. The electrochemical sensing of nitrobenzene was carried out using CCNRs‐modified glassy carbon (GC) electrodes by means of cyclic voltammetric (CV) technique. The peak current (Ip) was found to be linearly co‐related to nitrobenzene (NB) concentration (R2 = 0.9665). A substantial enhancement in cathodic peak current (C1), and sensitivity (∼738.8 nA/μM) was observed for the CCNRs‐modified GC electrode than those of CNPs and CCNPs‐modified electrodes.  相似文献   

15.
BexZn1‐xO nanorod arrays with high crystalline quality were fabricated on Si substrate by a simple, low‐cost hydrothermal method. The effect of Be‐corporation on the structure, morphology and optical property of ZnO nanorod arrays was investigated. The diameter of BexZn1‐xO nanorods gradually decreased and the length of them increased with increasing Be concentration. Edge emissions of the BexZn1‐xO nanorods show a obvious blue shift upon the increase of the Be content.  相似文献   

16.
T. Taurines  B. Boizot 《Journal of Non》2011,357(14):2723-2725
Increasing amounts of MoO3 were added to SiO2-B2O3-Na2O-CaO-Al2O3 glasses in order to trap molybdenum as powellite (nominally CaMoO4). Different heat treatments were performed to study their influences on powellite crystallization by X-ray diffraction and EPR. The glass compositions studied in this work lead to glass-ceramics rich in CaMoO4, up to [MoO3] = 5 mol% no poorly durable Na2MoO4 phase was identified by XRD. Trivalent actinides surrogates (Gd3+) were observed to incorporate into CaMoO4 crystals.  相似文献   

17.
Different morphologies of single‐crystalline orthorhombic phase bismuth sulfide (Bi2S3) nanostructures, including sub‐microtubes, nanoflowers and nanorods were synthesized by a urea‐assisted hydrothermal method at a low temperature below 120 °C for 12 h. The as‐synthesized powders were characterized by X‐ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and UV‐vis spectrophotometry. The experimental results showed that the sulfur sources had a great effect on the morphology and size of the resulting powders. The formation mechanism of the Bi2S3 nanostructures with different morphologies was discussed. All Bi2S3 nanostructures showed an appearance of blue shift relative to the bulk orthorhombic Bi2S3, which might be ascribed to the quantum size effect of the final products. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In the present paper, single‐crystalline lanthanum orthovanadate (LaVO4) nanorods were synthesized by an ethylenediaminetetraacetic acid (EDTA)‐mediated hydrothermal method. The resulting products were characterized using XRD, SEM, TEM and HRTEM. The experimental results illustrated that the morphologies and microstructures of LaVO4 nanorods were influenced by EDTA and pH value of the precursor solution. The magnetic properties measurements showed that the magnetocrystalline anisotropy was greatly strengthened by the strong effect of the one‐dimensional anisotropy, and the magnetic properties of LaVO4 nanorods are better than that of LaVO4 nanoparticles. The growth mechanism of LaVO4 nanorods was also discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The phase diagram for the crystallization of L‐asparaginase II including the metastable zone width (MZW), in the presence of PEG6000 and ethanol, respectively, has been studied by an online turbidity technique out of the crystallization in solution (see part I of this work 1 ). Here this paper describes a further investigation on constructing a phase diagram including MZW for the crystallization of L‐asparaginase II with a different precipitant agent of 2‐methyl‐2, 4‐pentandiol (MPD). Along with the phase diagram, the single crystal X‐ray data were successfully collected at 100K from a crystal formed in the presence of 26% (v/v) MPD. The crystals indicate an orthorhombic form and belong to the space group of P212121 with the unit cell parameters a = 93.9, b = 125.77, c = 151.75Å. The crystal diffracted up to a resolution of 2.88 Å.  相似文献   

20.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号