首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanadium (V) doped ZnO thin films (Zn1‐xVx O, where x = 0, 0.05, 0.10) have been grown on sapphire substrates by RF magnetron sputtering to realize room temperature ferromagnetism (RTFM). The grown films have been subjected to X‐ray diffraction (XRD), resonant Raman scattering, photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements to investigate their structural, optical and magnetic properties, respectively. The full width at half maximum of XRD and Raman scattering peaks increases with V ion concentration indicates that the V ions have been substituted on Zn2+ ions in the ZnO matrix. The increase in oxygen vacancies with V concentration is evidenced by PL measurements. Rutherford backscattering spectrometry analysis confirms the presence of the V ions in the films. The room temperature VSM measurements reveal the signature of ferromagnetism in V doped ZnO thin films. It has been observed that the grain boundary defects, i.e., oxygen vacancies play a crucial role in inducing RTFM in V doped ZnO films. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Transparent Zinc Oxide (ZnO) thin films have been grown on Si (100) and Sapphire (0001) substrates by RF magnetron sputtering for different growth time intervals (10, 30 and 60 min) to study the substrate and thickness effects. All the films have been grown at a substrate temperature of 450 °C. It has been found that the average growth rate on Si (100) substrate (8.6 nm/min) is higher than that on Sapphire (0001) substrate (2.6 nm/min) in an identical growth condition which clearly shows the virtual role of substrates. The lower growth rate on Sapphire (0001) suggests that the increasingly ordered and uniform growth due to less lattice mismatch. The grown films have been characterized by X‐ray diffraction (XRD), Reflectance, Photoluminescence (PL) and Hall measurements. The XRD result (FWHM) reveals that for lower growth time, the films grown on Si (100) is better than on Sapphire (0001). Conversely, for higher growth time, the films grown on Sapphire (0001) is better than on Si (100). The variation of strain behavior due to thickness on both substrates has been justified by UV‐Vis reflectance, photoluminescence and Hall effect measurements. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
采用射频磁控溅射法,在不同的衬底温度下制备了钽(Ta)掺杂的氧化锌(ZnO)薄膜,采用X射线能谱(EDS)、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见分光光度计和光致发光(PL)光谱研究了衬底温度对制备的Ta掺杂ZnO薄膜的组分、微观结构、形貌和光学特性的影响.EDS的检测结果表明,Ta元素成功掺入到了ZnO薄膜;XRD图谱表明,掺入的Ta杂质是替代式杂质,没有破坏ZnO的六方晶格结构,随着衬底温度的升高,(002)衍射峰的强度先增大后降低,在400℃时达到最大;SEM测试表明当衬底温度较高时(400℃和500℃),Ta掺杂ZnO薄膜的晶粒明显变大;紫外-可见透过光谱显示,在可见光范围,Ta掺杂ZnO薄膜的平均透光率均高于80;,衬底不加热时制备的Ta掺杂ZnO的透光率最高;制备的Ta掺杂ZnO薄膜的禁带宽度范围为3.34~3.37eV,衬底温度为500℃时制备的Ta掺杂ZnO薄膜的禁带宽度最小,为3.34eV.PL光谱表明衬底温度为500℃时制备的Ta掺杂ZnO薄膜中缺陷较多,这也是造成薄膜禁带宽度变小的原因.  相似文献   

4.
InAs co‐doped ZnO films were grown on sapphire substrates by pulsed laser deposition. The grown films have been characterized using X‐ray diffraction (XRD), Hall effect measurements, Atomic force microscope (AFM) and Field emission scanning electron microscope (FESEM) in order to investigate the structural, electrical, morphological and elemental properties of the films respectively. XRD analysis showed that all the films were highly orientated along the c‐axis. It was observed from Hall effect measurements that InAs co‐doped ZnO films were of n‐type conductivity. In addition, the presence of In and As has been confirmed by Energy dispersive X‐ray analysis. AFM images revealed that the surface roughness of the films was decreased upon the co‐doping. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
利用直流反应磁控溅射法(纯金属锌作为靶材,Ar-N2-O2混合气体作为溅射气体)在石英玻璃衬底上制备了N掺杂p型ZnO薄膜.通过XRD、Hall和紫外可见透射谱分别研究了衬底温度对ZnO薄膜结构性能、电学性能和光学性能的影响.XRD结果显示所有制备的薄膜都具有垂直于衬底的c轴择优取向,并且随着衬底温度的增加,薄膜的晶体质量得到了提高.Hall测试表明衬底温度对p型ZnO薄膜的电阻率具有较大影响,400℃下生长的p型ZnO薄膜由于具有较高的迁移率(1.32 cm2/Vs)和载流子浓度(5.58×1017cm-3),因此表现出了最小的电阻率(8.44Ω·cm).  相似文献   

6.
We prepared Co‐doped ZnO films by the electrochemical deposition. X‐ray diffraction (XRD), high resolution transmission microscopy (HRTEM), x‐ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), x‐ray absorption near‐edge structure (XANES), vibrating sample magnetometer (VSM), optical absorption, and photoluminescence (PL) measurements were carried out on the samples. The results showed Co atoms substituted Zn atoms in the ZnO lattice without the formation of the impurity phase. VSM measurements showed the ferromagnetic properties for the Co‐doped ZnO samples. When the Co doping concentration increased, the band gaps were widened and the PL peak positions shifted towards the short wavelength direction. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
采用射频磁控溅射法,在不同的Ar∶O2条件下,以高掺磷n型Si衬底为磷掺杂源制备了p型ZnO薄膜和p-ZnO/n-Si异质结.对ZnO∶P薄膜进行了光致发光谱(PL)、霍尔参数、Ⅰ-Ⅴ特性、扫描电镜(SEM)和X射线衍射谱(XRD)等测试.结果表明,获得的ZnO∶P薄膜沿(0002)晶面高取向生长,以3.33 eV近带边紫外发光为主,伴有2.69 eV附近的深能级绿色发光峰,空穴浓度为8.982 × 1017/cm3,空穴迁移率为9.595 cm2/V·s,p-ZnO/n-Si异质结I-V整流特性明显,表明ZnO∶P薄膜具有p型导电特性.  相似文献   

8.
Erbium (Er3+) doped LiNbO3 single crystal thin films have been grown LiNbO3 (001) substrate by the liquid phase epitaxy method. The crystallinity was determined by high‐resolution X‐ray diffraction. The lattice mismatch between Er3+ doped LiNbO3 films and LiNbO3 (001) substrate was investigated by X‐ray rocking curve analysis. Also we studied the structural characteristics of Er3+ doped LiNbO3 films and surface morphology dependent on the film thickness.  相似文献   

9.
The Ga-doped and (Ga, Co)-codoped ZnO films were grown on quartz glass substrate by inductively coupled plasma enhanced physical vapor deposition. The effect of Co doping and oxygen pressure on the structural, optical, electrical and magnetic properties of the as-grown films was investigated. The structural characterization revealed that high-quality films were grown with wurtzite structure and c-axis preferred crystalline orientation. The surface morphology was affected by Co doping and oxygen pressure. Room-temperature ferromagnetism was observed in (Ga, Co)-codoped ZnO films. We found that the optical and electrical properties were degraded with Co doping. The Ga-doped ZnO films had an average transmittance of above 88% in the visible wavelength, while (Ga, Co)-codoped ZnO showed a lower average transmittance (∼65%) due to the d-d transitions of Co2+. The resistivity and Hall mobility of (Ga, Co)-doped ZnO samples were lower than those of Ga-doped ZnO films when grown at the same oxygen pressure.  相似文献   

10.
Transparent conductive gallium‐doped zinc oxide (Ga‐doped ZnO) films were prepared on glass substrate by magnetron sputtering. The influence of substrate temperature on structural, optoelectrical and surface properties of the films were investigated by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), spectrophotometer, four‐point probe and goniometry, respectively. Experimental results show that all the films are found to be oriented along the c‐axis. The grain size and optical transmittance of the films increase with increasing substrate temperature. The average transmittance in the visible wavelength range is above 83% for all the samples. It is observed that the optoelectrical property is correlated with the film structure. The Ga‐doped ZnO film grown at the substrate temperature of 400 °C has the highest figure of merit of 1.25 × 10−2 Ω−1, the lowest resistivity of 1.56 × 10−3 Ω·cm and the highest surface energy of 32.3 mJ/m2.  相似文献   

11.
In this paper, a single crystalline GaN grown on Si(1 1 1) is reported using a GaN buffer layer by a simple vacuum reactive evaporation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence measurement (PL), and Hall measurement results indicate that the single crystalline wurtzite GaN was successfully grown on the Si(1 1 1) substrate. The surface of the GaN films is flat and crack-free. A pronounced GaN(0 0 0 2) peak appears in the XRD pattern. The full-width at half-maximum (FWHM) of the double-crystal X-ray rocking curve (DCXRC) for (0 0 0 2) diffraction from the GaN epilayer is 30 arcmin. The PL spectrum shows that the GaN epilayer emits light at the wavelength of 365 nm with an FWHM of 8 nm (74.6 meV). Unintentionally doped films were n-type with a carrier concentration of 1.76×1018/cm3 and an electron mobility of 142 cm3/V s. The growth technique described was simple but very powerful for growing single crystalline GaN films on Si substrate.  相似文献   

12.
本文采用脉冲激光沉积(PLD)方法在单晶Si(100)衬底上沿c轴方向生长出单晶ZnCoAlO薄膜,并通过加镀Cu层调节薄膜的光学和磁学特性.采用X射线衍射仪(XRD),光致发光光谱仪,振动样品磁强计(VSM)和霍尔效应仪对薄膜的结构、光学和磁学性能进行了研究.实验表明,样品均具有纤锌矿结构并沿(002)面择优生长.加镀Cu层之后,薄膜紫外发光得到增强,掺杂导致薄膜ZnO晶格能带间隙变宽,并使得近带边激子发光增强.同时发现,在室温下Cu离子对薄膜磁性和电子浓度产生影响,Cu掺杂可以改变薄膜中载流子浓度,并影响原有磁性的双交换机理.  相似文献   

13.
1, 3 and 5 mol% ZnO doped LiNbO3 film and 2 mol% MgO doped LiNbO3 multilayer films were grown on the LiNbO3 (001) substrate by liquid phase epitaxy (LPE) method with a Li2O‐V2O5 system. We examined the optical transmission spectra of the Zn:LiNbO3 by Fourier Transform‐Infrared Spectrophotometer (FT‐IR). The crystallinity and the lattice mismatch between the Zn:LiNbO3 film and Mg:LiNbO3 film was confirmed by x‐ray rocking curve (XRC) and observed the ZnO and MgO distribution in the cross‐section of the multilayer thin films by electron probe micro analyzer (EPMA). Furthermore, the surface morphology of the films was observed using atomic force microscopy (AFM). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
ZnO films on Al2O3 substrate were grown by using a pulsed laser deposition method. Through photoluminescence (PL) and X-ray diffraction (XRD) measurements, the optimum growth conditions for the ZnO growth were calculated. The results of the XRD measurement indicate that ZnO film was strongly oriented to the c-axis of hexagonal structure and epitaxially crystallized under constraints created by the substrate. The full-width half-maximum for a theta curve of the (0 0 0 2) peak was 0.201°. Also, from the PL measurement, the grown ZnO film was observed to be a free exciton, which indicates a high quality of epilayer. The Hall mobility and carrier density of the ZnO film at 293 K were estimated to be 299 cm2/V sec and , respectively. The absorption spectra revealed that the temperature dependence of the optical band gap on the ZnO films was .  相似文献   

15.
我们利用MOCVD设备在α-Al2O3衬底上生长了c轴取向的ZnO薄膜,通过X射线衍射(XRD)、光致发光谱(PL)对ZnO薄膜进行表征,研究了退火对ZnO薄膜光电特性影响.通过退火优化, ZnO薄膜的结晶性得到提高,晶粒尺寸变大,紫外光发射峰的强度相对变强.  相似文献   

16.
Epitaxial growth of ZnO thin films on Si substrates by PLD technique   总被引:1,自引:0,他引:1  
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films.  相似文献   

17.
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at different substrate temperatures (303, 373 and 473 K) by vacuum evaporation. The elemental composition of the deposited InSb film was found to be 52.9% (In) and 47.1% (Sb). X‐ray diffraction studies confirm the polycrystallinity of the films and the films show preferential orientation along the (111) plane. The particle size (D), dislocation density (δ) and strain (ε) were evaluated. The particle size increases with the increase of substrate temperature, which was found to be in the range from 22.36 to 32.59 nm. In Laser Raman study, the presence of longitudinal mode (LO) confirms that the deposited films were having the crystalline nature. Raman peak located at 191.26 cm–1 shift towards the lower frequencies and narrows with increase in deposition temperature. This indicates that the crystallinity is improved in the films deposited at higher substrate temperatures. Hall measurements indicate that the films were p‐type, having carrier concentration ≅1016 cm–3 and mobility (4–7.7) ×103 cm2/Vs. It is observed that the carrier concentration (N) decreases and the Hall mobility (μ) increases with the increase of substrate temperature. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Large‐scale zinc oxide (ZnO) nanotetrapods have been grown on p‐type Si (111) substrate by oxidizing zinc pieces in air by thermal evaporation technique without the presence of any catalyst. The size and morphology of the nanostructures was found to depend on experimental parameters. The grown nanostructures were characterized by X‐ray Diffraction (XRD), Photoluminescence (PL), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM) and analysis of elemental composition was done by Energy Dispersive X‐ray analysis (EDX). The EDX spectrum shows that the grown product contains Zn and O only. The X‐ray diffraction pattern indicates that the microstructure of the obtained products is typical hexagonal wurtzite ZnO. The optical properties were studied using room temperature PL spectroscopy which indicates that the products are of high optical quality and the near band edge UV transition peak intensity increases with decrease in tetrapod size. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The structural and infrared properties of the highly (00.2) oriented ZnO film, randomly grown Au-catalyzed ZnO nanowires (NWs) and vertically aligned self-catalyzed ZnO NWs were compared. In the XRD analysis, (0 0 2) diffraction intensity of self-catalyzed ZnO NWs was enhanced mainly attributed to the preferential growth of NWs in [0 0 0 1] as compared to the ZnO film and the randomly grown Au-catalyzed ZnO NWs. The high UV-to-green emission ratio of self-catalyzed ZnO NWs in room temperature PL measurement indicates that they had a better crystal quality as compared to Au-catalyzed ZnO NWs and ZnO film. Infrared spectroscopy has been used to characterize these films and nanowires too. The phonon peak 407 cm−1 which related to the transverse optical (TO) vibrations perpendicular to the optical axis was observed in the IR reflectivity measurements on the highly c-oriented ZnO film. The IR peaks that appeared in the 550–580 cm−1 region of the spectra of the specimens could be assigned to the ZnO NWs as it was not observed in the ZnO film. These peaks were observed in the 550–580 cm−1 region in both s- and p-polarized light for the randomly grown Au-catalyzed ZnO NWs. In contrast, the IR peak at 580 cm−1 was clearly shown in p-polarized light but not in the s-polarized light for vertically aligned ZnO NWs. This indicated that the vibration was polarized along the vertically aligned ZnO NWs. The (00.2) orientation of the ZnO specimens could be identified by comparing the p- and s-polarized IR spectra.  相似文献   

20.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号