首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The synthesis optimization of three-dimensional photonic crystals (direct and inverse opals) is discussed in terms of the influence of processing parameters on the final optical quality. A colloidal/sol–gel route, starting with the self-organization of polystyrene microspheres into opal structures by convective self-assembly, followed by infiltration with a dielectric matrix precursor sol and heat treatment, has been followed. Several substrate hydrophilization methods have been tested and different substrates. Sol–gel infiltration of the opal template interstices with silica was achieved by dip-coating or micro-syringe application and it was followed by removal of the polymeric template. The concentration of the colloidal sol, containing polystyrene spheres of 235 or 460 nm in diameter, was optimized. The structural and optical properties of the opals and inverse opals have been studied by field emission scanning electron microscopy and optical reflectivity spectroscopy, in order to assess the relationship between their structure and the photonic properties obtained. By using borosilicate glass substrates hydrophilized with hydrochloric acid, colloidal photonic crystals of good quality have been obtained, with well ordered regions up to ~100 μm2. By monitoring the effective refractive index change with relative humidity of the surrounding atmosphere, using spectroscopic ellipsometry with an environmental chamber, it was concluded that the present photonic crystals are suitable for humidity sensing applications.  相似文献   

2.
具有梯度结构的蛋白石光子晶体具有独特的光学性能。本文通过垂直沉积法和电场诱导沉积等方法共同作用将具有不同直径的聚苯乙烯(Polystyrene)胶体微球逐层组装在一起,制备出具有梯度周期尺寸变化的蛋白石结构。  相似文献   

3.
反蛋白石结构光子晶体制备技术   总被引:8,自引:0,他引:8  
光子晶体是一种具有光子带隙的新型材料,由于其可以控制和抑制光子运动的特性,在光通讯领域具有广阔的应用前景.反蛋白石结构是光子晶体一种重要的结构,由于其制备方法简便、成本低廉而受到人们的普遍关注.本文在介绍目前常用的几种制备光子晶体技术的基础上,详细阐述了制备反蛋白石结构光子晶体的各种技术和方法、以及利用这些制备技术和方法在反蛋白石结构光子晶体上制备一维和二维缺陷的最新进展.  相似文献   

4.
采用St?ber法制备不同尺寸SiO2胶体球,利用多次垂直沉积法制备SiO2双尺寸光子晶体.通过场发射扫描电子显微镜(FE-SEM)对所得双尺寸光子晶体的形貌和排列方式进行表征.对双尺寸光子晶体的生长过程进行探讨,研究界面作用力及胶体球间相互作用力对制备稳定结构的影响.研究结果表明,SiO2双尺寸光子晶体具有更加有序稳定的结构.胶体球间的相互作用力随胶体球粒径增大而增大,大粒径胶体球更有利于形成稳定的结构.  相似文献   

5.
本文采用水平沉积方法,制作出各种胶体晶体薄膜.以聚苯乙烯微球为构建单元,制作了多种二元胶体晶体和非单一平面的胶体晶体.为实现太赫兹光子晶体波导,还采用这一方法将线缺陷植入胶体晶体.结果显示通过该方法可以获得很好的有序结构,说明水平沉积方法可以广泛于各种胶体晶体制作.  相似文献   

6.
Using Zn nanowires as a self-sacrificed template, hierarchical tubes constructed by zinc oxide (ZnO) nanoflakes and ZnO nanotubes have been successfully fabricated by two different thermal-oxidation modes. The products were characterized by the X-ray powder diffraction, transmission electron microscopy and field-emission scanning electron microscopy. The experimental results show that the formation processes of ZnO nanostructures are sensitive to the growth temperature, which is lower or higher the melting point of Zn (419 °C). ZnO nanoflake tubes and ZnO nanotubes can be controlled through the variation of the heat-treatment process of Zn nanowires and their growth pathway can be described by two types of growth mechanism, in terms of Kirkendall effect and the sublimation of the Zn cores, respectively. Our method provides an easy and convenient way to prepare metal oxides tubular nanostructures with different morphologies through self-sacrificed template method via adjusting the heat-treatment process.  相似文献   

7.
应用平面波展开法分析了三维反蛋白石结构光子晶体的带隙性质;计算了沿[111]方向入射时其赝带隙(第一、第三赝带)中心频率分别与填隙材料在模板中填充率ff、模板煅烧因子sf的关系曲线:随ff的减小,v增大;随sf的增大,v随之增大,非理想状态下,ff<100;、sf>1,因此较理想态发生蓝移;由此提出了求解平均填充率ffev与平均煅烧因子sfev的计算框图.  相似文献   

8.
We report contents of colloidal crystallization experiments in ISSCG-16. The participants produce two kinds of colloidal crystals, i.e., close-packed opal type crystals, and non-close-packed charged colloidal crystals. They can observe the crystallization processes by using optical microscopy and reflection spectroscopy.  相似文献   

9.
Ultra-thick and crack-free colloidal crystals have many advantages in a number of existing and emerging applications. In this work, such systems are fabricated by a simple and reproducible method based on assembly of monodisperse silica particles by a crystalline layer assembly technique (CLAT). We find that high quality of colloidal crystals is obtained by using two simple processes: sintering of silica particles and thermal treatment of colloidal crystals. The crack-free colloidal crystal with a thickness of 100 μm is fabricated. The morphologies and microstructures of colloidal crystals are identified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The reflection spectra are measured by UV-VIS spectrum measurement. The reflection spectra of the colloidal crystal with different thicknesses are calculated by using multiple scattering methods. When the thickness of the colloidal crystal is smaller than 60 μm, the reflection spectra of experimental measurements agree very well with that of theoretical calculations.  相似文献   

10.
In this paper we report a chemical method named coordination reaction method to synthesize ZnO nanowire arreys. ZnO nanowires with the diameter about 80nm were successfully fabricated in the channels of the porous anodic alumina (PAA) template by the above coordination reaction method. The microstructures of ZnO/PAA assembly were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The results showed that the ZnO nanowires can be uniformly assembled into the nanochannels of PAA template. The growth mechanism of ZnO nanowires and the conditions of the coordination reaction are discussed. Photoluminescence (PL) measurement shows that the ZnO/PAA assembly system has a blue emission band caused by the various defects of ZnO. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
采用NH4Cl为矿化剂,以金属锌片为锌源,水热合成出多种不同形貌的ZnO微纳米结构.其中ZnO纳米棒及铅笔都沿[001]方向生长,结晶性很好.在水热条件下, ZnO纳米棒通常倾向于自组装成花状的结构.本文从鲍林电负性的角度揭示了形成这些微纳米结构的化学反应机理,分析了Cl 和NH+4在这些微纳米结构形成过程中所起的作用.研究结果表明:温度和填充度对ZnO纳米结构的结晶性和形貌也有重要的影响.当温度从150 ℃升至180 ℃时,ZnO纳米晶的结晶性明显更好.当填充度从60;增加到80;时,除了形成ZnO纳米棒花状自组装结构以外,在金属锌片表面还趋于生成大量的ZnO微球.  相似文献   

12.
In this paper, copper dendrites decorated with ZnO rods have been electrolessly deposited on brass substrate by a simple galvanic replacement method. SEM images show that these copper dendrites possess a pronounced trunk and highly ordered branches distributed on both sides of the trunk. Meanwhile, both the trunk and branches are decorated with ZnO rods. The diffusion‐limited aggregation (DLA) model has been used to explain the fractal growth of Cu dendritic structures. This method provides a facile route to the synthesis of copper dendrites with ZnO, which can be extended to the preparation of other forms three‐dimensional (3‐D) metal structures or metal/ZnO composites by modifying electrolyte parameters such as composition, concentration, pH and temperature. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The generation mechanism for CuAu-I type ordered structures in InGaAs grown on (110) InP substrates by molecular beam epitaxy is discussed. On the basis of previous work together with considerations of the atomic arrangement of the ordered structure and surface reconstruction on the (110) plane, we propose four possible models for the ordering. Through precise evaluation of these models, two models are selected as the most probable ones: these involve formation of the ordered structures on surfaces dominated by two monolayer steps. This model have been experimentally proven by the analyses of electron diffraction patterns from different crystals grown on different growth surfaces.  相似文献   

14.
Birefringent structures in liquid crystalline fluids, such as colloidal assemblies or topological defects, show high potential for use as photonic elements. Here, we present a brief overview of two photonic phenomena originating from coupling light fields with complex birefringent nematic profiles: (i) the generation of vector laser beams from simple Gaussian beams by propagating light along nematic discliantions, and (ii) tunable photonic crystals from blue phase colloidal crystals conditioned by the different underlying symmetries of the particle lattice and the blue phase birefringence. The polarization profile of initially simple linearly polarized Gaussian beams is shown to change into a defect structure at distinct distances travelled along the disclination with the topological invariant (winding number) of the light field and nematic director distinctly coupled. Upon pulsed laser illumination, the nematic discliantions are also shown to split the light pulse into multiple intensity regions. Blue phase I face centred cubic colloidal crystals are shown as examples of tunable photonic crystals, where local band-baps can open by differently combining the symmetries of the two components, e.g. by changing the particle size. The spatial profiles of selected photonic bands in the blue phase colloidal crystals are shown, finding the particles and blue phase double twist cylinders as possible carriers of high-light-intensity regions.  相似文献   

15.
We describe the protocol that we have elaborated in order to obtain monosize polystyrene spheres. Starting from these spheres a simple and effective method, based on spin-coating technique, was developed to realize colloidal photonic crystal structures. The process produces compact 3D arrays of polystyrene microspheres (opals) that are organized into crystalline lattices. This process offers the ability to rapidly form 3D photonic crystals using inexpensive instrumentation, which makes it attractive for an array of applications. Process parameters, fabricated structures, and their experimental characterization are presented.  相似文献   

16.
We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose‐shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X‐ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Well-aligned ZnO nanocone arrays (NCAs) were prepared on fluorine doped tin oxide (FTO) substrates using highly ordered ZnO nanorod arrays (NRAs) as templates to guide the growth via a hydrothermal method. In contrast, only disordered ZnO nanocones on FTO were obtained in the absence of the highly ordered ZnO nanorod templates. The well-aligned ZnO nanocone arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–visible absorption, and photoluminescence (PL) spectroscopies. It was found that the highly ordered ZnO NRAs pre-formed on FTO played a critical role in dictating the further growth of the well-aligned ZnO NCAs from them. Significantly, strong light-trapping effect was revealed for the well-aligned ZnO NCAs, which may find important applications in, e.g., photovoltaics.  相似文献   

18.
Sapphire and SiC are typical substrates used for GaN growth. However, they are non-native substrates and result in highly defective materials. The use of ZnO substrates can result in perfect lattice-matched conditions for 22% indium InGaN layers, which have been found to suppress phase separation compared to the same growths on sapphire. InGaN layers were grown on standard (0 0 0 2) GaN template/sapphire and (0 0 0 1) ZnO substrates by metalorganic chemical vapor deposition. These two substrates exhibited two distinct states of strain relaxation, which have direct effects on phase separation. InGaN with 32% indium exhibited phase separation when grown on sapphire. Sapphire samples were compared with corresponding growths on ZnO, which showed no evidence of phase separation with indium content as high as 43%. Additional studies in Si-doping of InGaN films also strongly induced phase separation in the films on sapphire compared with those on ZnO. High-resolution transmission electron microscopy results showed perfectly matched crystals at the GaN buffer/ZnO interface. This implied that InGaN with high indium content may stay completely strained on a thin GaN buffer. This method of lattice matching InGaN on ZnO offers a new approach to grow efficient emitters.  相似文献   

19.
Radial‐like ZnO structures were prepared using zinc sulfate (ZnSO4·7H2O) and zinc acetate [Zn(CH3COO)2·2H2O] as zinc sources by a facile template‐free hydrothermal method in this paper. Structural and optical properties of radial‐like ZnO structures are characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV‐vis spectrophotometer and photoluminescence measurement (PL). It has been found that the distinct surface morphologies of radial‐like ZnO structures grown by different zinc sources. Slim radial‐like ZnO with a hexagonal wurtzite structure is grown by using ZnSO4·7H2O as zinc sources, whereas coarse radial‐like ZnO with zincite structure is achieved by zinc acetate. The UV‐vis absorption spectra of them both display an obvious and significant absorption in the ultraviolet region. The room temperature PL spectra of ZnO structures grown by two different zinc sources possess a common feature that consists of a strong ultraviolet (UV) peak and visible emission band.  相似文献   

20.
The growth of ZnO single crystals and crystalline films by solvothermal techniques is reviewed. Largest ZnO crystals of 3 inch in diameter are grown by a high-pressure medium-temperature hydrothermal process employing alkaline-metal mineralizer for solubility enhancement. Structural, thermal, optical and electrical properties, impurities and annealing effects as well as machining are discussed. Poly- and single-crystalline ZnO films are fabricated from aqueous and non-aqueous solutions on a variety of substrates like glass, (100) silicon, -Al2O3, Mg2AlO4, ScAlMgO4, ZnO and even some plastics at temperatures as low as 50 °C and ambient air conditions. Film thickness from a few nanometers up to some tens of micrometers is achieved. Lateral epitaxial overgrowth of thick ZnO films on Mg2AlO4 from aqueous solution at 90 °C was recently developed. The best crystallinity with a full-width half-maximum from the (0002) reflection of 26 arcsec has been obtained by liquid phase epitaxy employing alkaline-metal chlorides as solvent. Doping behavior (Cu, Ga, In, Ge) and the formation of solid solutions with MgO and CdO are reported. Photoluminescence and radioluminescence are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号