首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>Comparison in electron transfer(ET) processes from decamethyferrocene(DMFe) in nitrobenzene(NB) to ferric ion in aqueous phase was investigated for the first time by the scanning electrochemical microscopy(SECM).As compared with the system of Fe(CN)_6~(3-)-DMFe,the ET rate obtained from Fe~(3+)-DMFe was lower in spite of larger driving force,which may arise from the effect of reorganization energy.Otherwise,the effect of common ion on rate constants was also probed and results suggested additional complexity of the ET mechanism between Fe(CN)_6~(3-) and DMFe.  相似文献   

2.
The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate(SDBS) on electron transfer(ET) reaction between ferricyanide aqueous solution and decamethylferrocene(DMFc) located on the adjacent organic phase was investigated for the first time by thin layer method.The adsorption of SDBS at the interface resulted in a decay in the cathodic plateau current of bimolecular reaction with increasing concentrations of SDBS in aqueous phase.However,the rate constant of electron transfer(k_(et)) i...  相似文献   

3.
The influence of ionic surfactants,cetyltrimethylammonium bromide(CTAB),self-assembled within silica-nanochannels of a hybrid mesoporous silica membrane(HMSM) on simple ion transfer(IT)behaviors at the meso-water/1,2-dichloroethane(W/DCE) interface arrays supported by such a HMSM was investigated by voltammetry for the first time.Significantly,it is found that the CTAB in HMSM can dramatically enhance the peak-current responses corresponding to ITs of some anions and even lower their Gibbs transfer energies from W to DCE,which could be ascribed to an anion-exchange process between anions and the bromide of CTAB associated with partial ion-dehydration induced by the CTAB.This work will provide a new strategy to study anion transfer processes and improve the electroanalytical performance for anion detection at the liquid/liquid interface.  相似文献   

4.
The form of liquid/liquid interface is flexible and it cannot be fixed at a spatial position. Also the interface is prevented from any physical contact by the organic phase and aqueous phase. In addition, analytical methods operated in vacuo cannot be applied. These restrictions depressed the development of liquid/liquid interfacial chemistry. However, the modification of liquid/liquid interfacial form and original analytical methods have been invented interdependently. The present review classifies the forms of liquid/liquid interface first, and it arrays the related analytical methods with brief explanations. It dominantly deals with recent reports of analytical methodologies, which were published in 2001-2004, on equilibrium, kinetics, and dynamics of substances at liquid/liquid interface, but it also includes historically important studies.  相似文献   

5.
A carbon ceramic electrode (CCE) modified with the redox probe—decamethylferrocene solution in hydrophobic organic solvent—2-nitrophenyloctyl ether and immersed into an aqueous solution was studied by scanning electrochemical microscopy (SECM). After the electrochemical oxidation of decamethylferrocene, its cations were detected near the electrode surface in the aqueous phase. This indicates that some fraction of the redox-active cations electrochemically produced in the organic phase is transferred across the liquid/liquid interface. They are reduced at the SECM tip and form a solid deposit. The amount of deposited decamethylferrocene was estimated by the anodic reaction at the tip. It is affected by the substrate–tip distance, deposition time, and electrolyte concentration. The SECM images of unmodified and modified CCEs are consistent with their heterogeneous structure.  相似文献   

6.
用薄层法研究了阴离子表面活性剂十二烷基苯磺酸钠(SDBS)对硝基苯/水界面电子转移的影响. 实验结果表明, 随着水相中十二烷基苯磺酸钠浓度的增加, 有机相中十甲基二茂铁(DMFc)和水相中Fe(CN)63-发生的界面双分子反应的阴极平台电流呈现递减趋势, 但是界面双分子反应速率常数却呈递增趋势. 这是由于阴离子表面活性剂十二烷基苯磺酸钠在硝基苯/水界面形成了修饰层, 影响了界面双电层结构. SDBS在液/液界面的吸附为Langmuir吸附.  相似文献   

7.
The chiral complexation of bilirubin (BR) with bovine and human serum albumin (BSA and HSA), and the aggregation of the complexes at the heptane+chloroform(5:1)/water interface were studied via UV/Vis absorption and circular dichroism (CD) measurements in combination with the centrifugal liquid membrane (CLM) method. The interfacial adsorptivities of BR, BSA and their complexes were also studied by performing interfacial tension measurements at the interface. The changes in the absorbances and the induced CD amplitudes of the interfacial BR-BSA complex provided insights into the mechanism of the conformational enantioselective complexation at the interface, and indicated that the chiral conversion induced by the complexation with BSA was from the P(+) form to the M(-) form of BR. The broadening of the 450 nm band and the appearance of a new shoulder at 474 nm further supported the formation of aggregates of the complexes at the interface. The dependence of the CD amplitude on the molar ratio of BSA to BR revealed that the composition of the complex was 1:1 BSA:BR. The probable interfacial reaction scheme was proposed, and the affinity constant of BR-BSA at the interface was found to be 4.67 x 10(8) M(-2). The interfacial complexation and aggregation of BR and HSA were weaker than those of the BR-BSA complex due to the different BR binding positions adopted for BSA and HSA and the binding effect of chloroform.  相似文献   

8.
Kinetically controlled electro-oxidation of a redox probe dissolved in the organic solvent, which is interposed between an electrode surface and an aqueous solution as a thin layer, is analyzed theoretically. It is demonstrated that the electrode reaction rate constant can be measured by the variation of scan rate in linear scan voltammetry both in the absence and in the superfluity of the supporting electrolyte dissolved in the film.Dedicated to Professor Dr. Alan M. Bond on the occasion of his 60th birthday  相似文献   

9.
A theory is provided for a reversible electro-oxidation of a neutral redox probe dissolved in room-temperature ionic liquid, which is sandwiched between an electrode surface and an aqueous solution as a thin film. If the peak potentials in cyclic voltammetry depend on the bulk concentration of electrolyte in water, the oxidation is most probably coupled to the transfer of anions from water into ionic liquid; but if the peak potentials are independent of the electrolyte concentration, the transfers of anions from water into ionic liquid and cations from ionic liquid into water are equally probable. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

10.
Summary An improved interface for the coupling of a liquid chromatograph (LC) and an electron-capture detector (ECD) allows the use of the LC-ECD combination for the determination of various types of chlorinated aromatic compounds. The addition of up to 6% of dioxan to the hexane used as mobile phase can be tolerated without serious deterioration of detector performance. Derivatization of polar compounds such as anilines, phenylurea herbicides, chlorophenols and hydroxylated polychlorobiphenyls with fluorine-and non-fluorine-containing acid anhydrides is a useful tool to extend the application range of LC-ECD. As an example, the analysis of a spiked soil sample is discussed.Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   

11.
Abstrac  Using liquid gallium electrodes it was proved that electrodiffusion method is a convenient tool for measuring the mass transfer at liquid/liquid interface. It was shown that mass transfer coefficient at the liquid/liquid interface at high Reynolds numbers is much more important in comparison to that measured at the solid/liquid interface at identical geometrical and hydrodynamic conditions. In experiments with the flow induced by the rotation of the upper disc (working ring electrode is placed on the bottom of the immobile disc), the Sherwood number increases in turbulent regime as Sh ∼ Re1.8 at the liquid/liquid interface, contrary to the traditional law Sh ∼ Re0.9 at the solid/liquid interface. In laminar regime the Sherwood number at the liquid/liquid and at the solid/liquid interfaces follows the traditional dependence Sh ∼ Re0.5. It was shown that sharp increasing of the mass transfer coefficient at the liquid/liquid interface is closely related with the appearance of the surface waves, the phenomenon is identified as a Kelvin-Helmholtz type instability. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 4, pp. 482–490. The text was submitted by the authors in English.  相似文献   

12.
将含有氧化还原电对的水溶液滴涂在铂盘电极表面, 然后将该电极插入到1,2-二氯乙烷溶液中, 形成稳定的油/水界面. 液滴中的K3Fe(CN)6和K4Fe(CN)6氧化还原电对既可以作为水相中的参比电对参与控制液/液界面上的电势差, 同时又可以作为水相的电子授受体参与界面上的电子转移反应. 结合扫描电化学显微镜电化学系统的特点, 利用其双恒电位仪分别控制界面电势差和现场扫描的优点, 通过扫描电化学显微镜的渐进曲线得到了不同界面电势差控制的电子转移反应速率常数. 实验结果表明, 应用此方法获得的液/液界面可以被外加电位极化, 在一定的电势差范围内, 反应速率常数与界面电势差的关系遵守Butler-Volmer公式.  相似文献   

13.
应用扫描电化学显微镜和微电极技术研究了水/1,2二氯乙烷界面上的反向电子转移反应.分别以K4Fe(CN)6和7,7,8,8四氰代二甲基苯醌(TCNQ)作为水相和有机相的电活性物质,通过选择合理的共同离子(TPAs+与TBA+)来控制界面电位差,实现了这一在热力学上通常不可能实现的反向电子转移反应.利用扫描电化学显微镜给出的正负反馈信息,研究了界面电位差驱动的液/液界面上的电子转移反应,并进一步得到了在不同的共同离子浓度比时,此异相界面反应速率常数kf为1.3×10-31.8×10-2cm/s(共同离子为TBA+)和2.5×10-32.8×10-2cm/s(共同离子为TPAs+).验证了此反应速率常数kf是由界面电位差所决定的.在此实验条件下,此反应速率常数kf与界面电位差的关系遵守Butler-Volmer公式.  相似文献   

14.
薄层循环伏安法是研究液/液界面电荷转移的一种新方法,具有简单、快速、易操作的优点。文章回顾了液/液界面电化学的发展历史,介绍了薄层法的实验原理,对其在电化学中的应用和研究进展进行了评述,总结了界面驱动力与电子转移速率的关系。  相似文献   

15.
应用扫描电化学显微镜研究了室温离子液体(Omim·Tf2N)与1,2-二氯乙烷(DCE)混合溶液/水界面上的电子转移反应. 在保持共同离子(Tf2N-)的浓度比恒定及异相电子转移反应由界面电势差所决定的条件下, 研究了离子液体和DCE混合溶液中二茂铁(Fc)与水相中亚铁氰化钾[K4Fe(CN)6]之间异相电子转移反应. 探讨了混合溶液中离子液体的体积分数(xRTIL)的变化对混合溶液/水界面上电子转移反应的影响. 结果表明, 随着xRTIL的减小(从1减小到0.1), Fc在混合溶液中的扩散系数单调递增(从2.730×10-7 cm2·s-1增加到9.131×10-6 cm2·s-1); 而异相电子转移反应速率常数(k)则先逐渐减小(从8.0 mol-1·cm·s-1减小到0.32 mol-1·cm·s-1), 之后又略有增大(从0.32 mol-1·cm·s-1增大到0.48 mol-1·cm·s-1). 对这种现象可能的原因进行了较详细探讨.  相似文献   

16.
A lattice-gas model is used to investigate the specific adsorption of ions at the interface between two immiscible electrolyte solutions. From Monte Carlo simulations, the profiles of particle densities and of the electrostatic potential are obtained. Specific adsorption is shown to affect the potential distribution markedly. In some cases an overshoot of the potential can be observed, an effect that is well known from specific adsorption at metal electrodes. This redistribution of charge and potential can increase the interfacial capacity, shift the potential of zero charge, and influence the rate of electron-transfer reactions.  相似文献   

17.
The transfer mechanism of an amphoteric rhodamine, sulforhodamine 101 (SR101), across the polarized water/1,2-dichloroethane (DCE) interface was investigated using cyclic voltammetry, differential voltfluorometry and potential-modulated fluorescence (PMF) spectroscopy. The voltammetric response for the ion transfer of SR101 monoanion from water to DCE was observed as the diffusion-controlled transfer process. An unusual voltammetric response was found at 0.15 V more negative than the formal transfer potential of SR101 in the cyclic voltammogram and voltfluorogram. The frequency dependence of the PMF responses confirmed the presence of the adsorption processes at negative potentials. In addition, a further transient adsorption step was uncovered at The interfacial mechanism of SR101 is discussed by comparing the results obtained from each technique.  相似文献   

18.
The redox reaction between -ascorbic acid in water and chloranil in nitrobenzene has been studied by means of polarography with an ascending water electrode as well as cyclic voltammetry with a stationary interface. Through accurate measurement of the limiting currents, it has been suggested that the redox reaction should be a two-electron reaction rather than a one-electron reaction described previously. A spectrophotometric technique has also been used to observe that the redox reaction proceeds spontaneously under certain conditions even without electrochemical control. Based on these findings, it has been concluded that the present heterogeneous charge transfer reaction is the ion transfer of chloranil semiquinone radical, which is driven by the homogeneous electron transfer between ascorbic acid and chloranil in the aqueous phase.  相似文献   

19.
Silver particles have been deposited at externally polarised 1,2-dichloroethane (DCE)/water interfaces supported at the tip of micro- and nanopipettes. The electrochemical process involved the reduction of silver ion in the aqueous phase by an organic-phase electron donor (butylferrocene). The silver nucleation and growth process was investigated using potential step chronoamperometry, and the resulting current–time transients were analysed to extract nucleus numbers. At larger pipettes, with diameters of several micrometers, multi-particle nucleation was observed and optical microscopy provided direct evidence for metal electrodeposition at the liquid/liquid interface. For pipettes with radii of 0.5 μm or smaller, the current–time behaviour was consistent with single particle generation. Under some conditions, detachment of the particle from the liquid/liquid interface was inferred from the current–time characteristics, and it is suggested that controlled-detachment from micropipettes could provide a method for the deposition of small metal structures on surfaces.  相似文献   

20.
A new approach to the voltammetric investigation of facilitated ion transfer processes is reported. The technique uses a rotating diffusion cell approach to induce laminar flow in the organic phase of a liquid|liquid electrochemical cell. The interface between two immiscible electrolyte solutions (ITIES) was stabilised against rotation with either γ-alumina or a track-etched polyester membrane. The resultant voltammetry is shown to be consistent with the Koutecký–Levich equation enabling kinetic parameters associated with facilitated transfer of sodium by dibenzo-18-crown-6 across the water|1,2-dichloroethane interface to be evaluated. In particular, the use of the more hydrophilic alumina membrane permits the uncertainties regarding the use of the membrane-stabilised ITIES, namely the interfacial position, to be eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号