首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The microdamage of porous transversely isotropic piezoelectric materials under complex macrostress is studied. The microdamages are modeled by pores. The damage of a microvolume is defined by the generalized Huber-Mises failure criterion for a transversely isotropic medium. The ultimate strength is a random function of coordinates with exponential or Weibull distribution. The stress-strain state and effective properties of the material are determined from the stochastic equations of electroelasticity. The deformation and microdamage equations are closed by the porosity balance equations. Deformation curves are plotted for two values of macrostrain or macrostress and different values of electric intensity. The influence of electric intensity on the microdamage of piezoelectric materials is studied__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 3, pp. 79–92, March 2005.  相似文献   

2.
The fracturing of glass and tearing of rubber both involve the separation of material but their crack growth behavior can be quite different, particularly with reference to the distance of separation of the adjacent planes of material and the speed at which they separate. Relatively speaking, the former and the latter are recognized, respectively, to be fast and slow under normal conditions. Moreover, the crack tip radius of curvature in glass can be very sharp while that in the rubber can be very blunt. These changes in the geometric features of the crack or defect, however, have not been incorporated into the modeling of running cracks because the mathematical treatment makes use of the Galilean transformation where the crack opening distance or the change in the radius of curvature of the crack does not enter into the solution. Change in crack speed is accounted for only via the modulus of elasticity and mass density. For this simple reason, many of the dynamic features of the running crack have remained unexplained although speculations are not lacking. To begin with, the process of energy dissipation due to separation is affected by the microstructure of the material that distinguishes polycrystalline from amorphous form. Energy extracted from macroscopic reaches of a solid will travel to the atomic or smaller regions at different speeds at a given instance. It is not clear how many of the succeeding size scales should be included within a given time interval for an accurate prediction of the macroscopic dynamic crack characteristics. The minimum requirement would therefore necessitate the simultaneous treatment of two scales at the same time. This means that the analysis should capture the change in the macroscopic and microscopic features of a defect as it propagates. The discussion for a dual scale model has been invoked only very recently for a stationary crack. The objective of this work is to extend this effort to a crack running at constant speed beyond that of Rayleigh wave. Developed is a dual scale moving crack model containing microscopic damage ahead of a macroscopic crack with a gradual transition. This transitory region is referred to as the mesoscopic zone where the tractions prevail on the damaged portion of the material ahead of the original crack known as the restraining stresses, the magnitude of which depends on the geometry, material and loading. This damaged or restraining zone is not assumed arbitrarily nor assumed to be intrinsically a constant in the cohesive stress approach; it is determined for each step of crack advancement. For the range of micronotch bluntness with 0 < β < 30° and 0.2 σ/σ0 0.5, there prevails a nearly constant restraining zone size as the crack approaches the shear wave speed. Note that β is the half micronotch angle and the applied stress ratio is σ/σ0 with σ0 being the maximum of the restraining stress. For σ/σ0 equal to or less than 0.5, the macrocrack opening displacement COD is nearly constant and starts to decrease more quickly as the crack approaches the shear wave speed. For the present dual scale model where the normalized crack speed v/cs increases with decreasing with the one-half microcrack tip angle β. There prevails a limit of crack tip bluntness that corresponds to β 36° and v/cs 0.15. That is a crack cannot be maintained at a constant speed if the bluntness is increased beyond this limiting value. Such a feature is manifestation of the dependency of the restraining stress on crack velocity and the applied stress or the energy pumped into the system to maintain the crack at a constant velocity. More specifically, the transitory character from macro to micro is being determined as part of the unknown solution. Using the energy density function dW/dV as the indicator, plots are made in terms of the macrodistance ahead of the original crack while the microdefect bluntness can vary depending on the tip geometry. Such a generality has not been considered previously. The macro-dW/dV behavior with distance remains as the inverse r relation yielding a perfect hyperbola for the homogeneous material. This behavior is the same as the stationary crack. The micro-dW/dV relations are expressed in terms of a single undetermined parameter. Its evaluation is beyond the scope of this investigation although the qualitative behavior is expected to be similar to that for the stationary crack. To reiterate, what has been achieved as an objective is a model that accounts for the thickness of a running crack since the surface of separation representing damage at the macroscopic and microscopic scale is different. The transitory behavior from micro to macro is described by the state of affairs in the mesoscopic zone.  相似文献   

3.
The theory of microdamage for materials with a transversely isotropic matrix and unidirectional ellipsoid-like fibers is set forth. Microdamage is modeled by empty pores. The failure criterion for a microvolume is assumed to have the Huber–Mises form where the ultimate strength is a random function of coordinates with a power or Weibull distribution. The stress–strain state and effective properties of the material are determined from the theory of elasticity for materials with a transversely isotropic matrix and unidirectional fibers. The deformation and microdamage equations are closed by the porosity-balance equations. The nonlinear dependences of the coupled processes of deformation and microdamage on macrodeformations are constructed. The effect of physical and geometrical parameters on the processes is studied  相似文献   

4.
Zonal fracturing mechanism in deep crack-weakened rock masses   总被引:1,自引:0,他引:1  
The mechanical behaviors of deep crack-weakened rock masses are different from those of shallow crack-weakened rock masses. The surrounding rock in shallow crack-weakened rock mass engineering is classified into loose zone, plastic zone and elastic zone, while the surrounding rock in deep crack-weakened rock mass engineering is classified into fractured zone and non-fractured zone, which occur alternatively. It is assumed that the deep rock masses contain one joint set, in which the probability density function describing the distribution of sizes is assumed to follow the Rayleigh distribution, and the probability density function describing the distribution of spacing is assumed to follow the Weibull distribution. On the basis of strength criterion of deep rock mass, the near-field stress redistribution around circular opening induced by excavation is determined. The strong interaction among cracks is investigated by using the dislocation model. The nucleation, growth, interaction and coalescence of cracks were analyzed based on the strain energy density factor theory. When cracks coalesce, failure of deep crack-weakened rock masses occurs, fractured zone is formed. Then, size and quantity of fractured zone and non-fractured zone are given out. The size and quantity of fractured zone increase with decreasing strength of rock mass. The size and quantity of fractured zone increase with increasing in situ stress. Zonal fracturing phenomenon occurs once value of in situ stress is larger than the unaxial compressive strength of rock masses. The size and quantity of fractured zone decrease with increasing λ when p2 > p1. The size and quantity of fractured zone increase with increasing λ when p2 < p1.  相似文献   

5.
Giovanni Pascale 《Meccanica》1984,19(3):214-222
Summary The problem of evaluating the strength of brittle materials demands a statitistical approach owing to the considerable dispersion shown by these materials, particularly if subject to stress states in which the tensile component is predominant. For this purpose, the Weibull theory can be conveniently applied, which is based on the concept of the weakest link in a chain allowing the determination of both the failure probability of a model under certain loading conditions and the corresponding mean strength.In the present work the Weibull theory is applied, by means of of the Stanley's approach, to the case of multiaxial stress states in order to deal with some problems not thoroughly investigated so far, among which the effect of the shear stresses on the flexural strength and the indirect evaluation of the tensile strength by means of the Brazilian test.In conclusion, the theory is applied to assess the difference between the tensile strength values obtained by means of different tests. The results achieved are then compared with experimental data.
Sommario Il problema della resistenza dei materiali fragili richiede un approccio statistico a causa della forte dispersione propria di questi materiali, in particolare se soggetti a uno stato tensionale prevalentemente di trazione. A questo scopo può essere applicata la teoria di Weibull, basata sul concetto dell'anello più debole di una catena, che consente di determinare la probabilità di crisi di un modello per una determinata condizione di carico e la corrispondente resistenza media.In questo lavoro la teoria di Weibull viene applicata al caso degli stati di tensione pluriassiali con l'approccio di Stanley, allo scopo di indagare su alcuni problemi non ancora affrontati per questa via, tra cui l'influenza delle tensioni tangenziali sulla resistenza a flessione e la determinazione indiretta della resistenza a trazione mediante prova Brasiliana.A conclusione, la teoria viene impiegata per valutare la differenza tra i valori di resistenza a trazione ottenibili con diversi tipi di prova. I risultati vengono posti a confronto con dati sperimentali.

Signification of fundamental symbols used P f probability of failure - applied stress - u location parameter - 0 scale parameter - m shape parameter (Weibull modulus) - (z) Gamma function - V total volume of the model - unit volume - f mean tensile strength in flexure - b mean indirect tensile strength (Brazilian test) - t mean direct tensile strength - tv mean direct tensile strength of unit volume - c mean cylindrical compressive strength. Some results of this work were presented at the following meetings:- 10th National Meeting of A.I.A.S., Associazione Italiana per l'Analisi delle Sollecitazioni, Cosenza (Italy), September 22–25, 1982;- 4th I.C.A.S.P., International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Firenze (Italy), June 13–17, 1983.This work was supported by the C.N.R.  相似文献   

6.
Crack repair using an elastic filler   总被引:2,自引:0,他引:2  
The effect of repairing a crack in an elastic body using an elastic filler is examined in terms of the stress intensity levels generated at the crack tip. The effect of the filler is to change the stress field singularity from order 1/r1/2 to 1/r(1-λ) where r is the distance from the crack tip, and λ is the solution to a simple transcendental equation. The singularity power (1-λ) varies from (the unfilled crack limit) to 1 (the fully repaired crack), depending primarily on the scaled shear modulus ratio γr defined by G2/G1=γrε, where 2πε is the (small) crack angle, and the indices (1, 2) refer to base and filler material properties, respectively. The fully repaired limit is effectively reached for γr≈10, so that fillers with surprisingly small shear modulus ratios can be effectively used to repair cracks. This fits in with observations in the mining industry, where materials with G2/G1 of the order of 10-3 have been found to be effective for stabilizing the walls of tunnels. The results are also relevant for the repair of cracks in thin elastic sheets.  相似文献   

7.
This work studies the asymptotic stress and displacement fields near the tip of a stationary crack in an elastic–plastic nonhomogeneous material with the emphasis on the effect of material nonhomogeneities on the dominance of the crack tip field. While the HRR singular field still prevails near the crack tip if the material properties are continuous and piecewise continuously differentiable, a simple asymptotic analysis shows that the size of the HRR dominance zone decreases with increasing magnitude of material property gradients. The HRR field dominates at points that satisfy |α−1 ∂α/∂xδ|1/r, |α−12α/(∂xδxγ)|1/r2, |n−1n/∂xδ|1/[r|ln(r/A)|] and |n−12n/(∂xδxγ)|1/[r2|ln(r/A)|], in addition to other general requirements for asymptotic solutions, where α is a material property in the Ramberg–Osgood model, n is the strain hardening exponent, r is the distance from the crack tip, xδ are Cartesian coordinates, and A is a length parameter. For linear hardening materials, the crack tip field dominates at points that satisfy |Etan−1Etan/∂xδ|1/r, |Etan−12Etan/(∂xδxγ)|1/r2, |E−1E/∂xδ|1/r, and |E−12E/(∂xδxγ)|1/r2, where Etan is the tangent modulus and E is Young’s modulus.  相似文献   

8.
This paper describes the influence of material toughness degradation, through reversed temper embrittlement (RTE) and mean stress on the near threshold fatigue crack growth characteristics of a CrMoV turbine bolting steel at ambient and elevated temperatures. It was established at ambient temperatures that strong effects of R-ratio and material condition (toughness) were observed on near threshold fatigue crack growth characteristics. At elevated temperatures it was shown that for the non-embrittled material that only under low R-ratio conditions did increased temperature increase the level of threshold stress intensity ΔKth, by some 20%. In the case of embrittled material, increasing the temperature increased ΔKth levels by around 30% and decreased near threshold growth rates by an order of magnitude at low to intermediate R-ratio levels.The effects of R-ratio on ΔKth for all material and mechanical testing conditions could be simply expressed by the difference between ΔKth at R = O and a constant B multiplied by R.Quantitative fractographic observations indicated that, generally, the incidence of intergranular failure prevalent in embrittled and non-embrittled steels exhibited a maximum at some specific ΔK level. Also in embrittled steels large effects of environmental assisted crack (EAC) growth were observed at near threshold fatigue crack growth rates. It was suggested that this was the result of the much reduced material cohesive strength which was caused by the presence of both impurity and hydrogen atoms.  相似文献   

9.
Bifurcation condition of crack pattern in the periodic rectangular array plays an important role in determining the final failure pattern of rock material. An approximation for the critical crack size/spacing ratio is established for a uniformly growing periodic rectangular array yields to a non-uniform growing pattern of crack growth. Numerical results show that the critical crack size/spacing ratio λcr depends on the number of cracks, the crack spacing, the perpendicular distance between two adjacent rows, as well as the loading conditions. In general, λcr increases with the number of lines. It is observed that the critical crack size/spacing ratio λcr for the periodic rectangular array decreases with an increase in the perpendicular distance between two adjacent rows. It is clear that the critical crack size/spacing ratio λcr for the periodic rectangular array under shear stress increases with increasing the crack spacing.  相似文献   

10.
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E=E0(z/c0)k (0<k<1) while Poisson's ratio ν remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of Pcr=−(k+3)πRΔγ/2 where Δγ is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k=0, the Gibson solid when k→1 and ν=0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off.  相似文献   

11.
The structural theory of microdamage of homogeneous and composite materials is generalized. The theory is based on the equations and methods of the mechanics of microinhomogeneous bodies with stochastic structure. A single microdamage is modeled by a quasispherical pore empty or filled with particles of a damaged material. The accumulation of microdamages under increasing loading is modeled as increasing porosity. The damage within a single microvolume is governed by the Huber-Mises or Schleicher-Nadai failure criterion. The ultimate strength is assumed to be a random function of coordinates with power-law or Weibull one-point distribution. The stress-strain state and effective elastic properties of a composite with microdamaged components are determined using the stochastic equations of elasticity. The equations of deformation and microdamage and the porosity balance equation constitute a closed-form system of equations. The solution is found iteratively using conditional moments. The effect of temperature on the coupled processes of deformation and microdamage is taken into account. Algorithms for plotting the dependences of microdamage and macrostresses on macrostrains for composites of different structure are developed. The effect of temperature and strength of damaged material on the stress-strain and microdamage curves is examined __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 6, pp. 3–42, June 2007.  相似文献   

12.

Background: The ring-pull test, where a ring of tissue is hooked via two pins and stretched, is a popular biomechanical test, especially for small arteries. Although convenient and reliable, the ring test produces inhomogeneous strain, making determination of material parameters non-trivial. Objective: To determine correction factors between ring-pull-estimated and true tissue properties. Methods: A finite-element model of ring pulling was constructed for a sample with nonlinear, anisotropic mechanical behavior typical of arteries. The pin force and sample cross-section were used to compute an apparent modulus at small and large strain, which were compared to the specified properties. The resulting corrections were validated with experiments on porcine and ovine arteries. The correction was further applied to experiments on mouse aortic rings to determine material and failure properties. Results: Calculating strain based on centerline stretch rather than inner-wall or outer-wall stretch afforded better estimation of tissue properties. Additional correction factors were developed based on ring wall thickness H, centerline ring radius Rc, and pin radius a. The corrected estimates for tissue properties were in good agreement with uniaxial stretch experiments. Conclusions: The computed corrections improved estimation of tissue material properties for both the small-strain (toe) modulus and the large-strain (lockout) modulus. When measuring tensile strength, one should minimize H/a to ensure that peak stress occurs at the sample midplane rather than near the pin. In this scenario, tensile strength can be estimated accurately by using inner-wall stretch at the midplane and the corrected properties.

  相似文献   

13.
Experimentally determined plastic constitutive equations of the parabolic form (σ − σy = β(ε − εy)1/2) are presented for a high strength alloy steel. Two deformation moduli β were required to describe the quasistatic compression data, both of which, as well as the point of change, were predicted by a mode index and transition strain structure of a general theory of plasticity. Dynamic strain, duration of impact, and final strain distribution were measured on specimen rods subjected to axial, symmetric, and constant velocity impact. The dynamic yield stress was 16% higher than the quasistatic value. The dynamic response function, deduced from a simple wave propagation theory, was also parabolic and a single deformation modulus, equal to the initial quasistatic value, applied. Thus, it was shown that the form of the quasistatic response function was preserved in dynamic loading, and that the increase of the dynamic stress was due to the increase of the yield stress.  相似文献   

14.
15.
A series of triaxial compression experiments were preformed for the coarse marble samples under different loading paths by the rock mechanics servo-controlled testing system. Based on the experimental results of complete stress-strain curves, the influence of loading path on the strength and deformation failure behavior of coarse marble is made a detailed analysis. Three loading paths (Paths I–III) are put forward to confirm the strength parameters (cohesion and internal friction angle) of coarse marble in accordance with linear Mohr-Coulomb criterion. Compared among the strength parameters, two loading paths (i.e. Path II by stepping up the confining pressure and Path III by reducing the confining pressure after peak strength) are suggested to confirm the triaxial strengths of rock under different confining pressures by only one sample, which is very applicable for a kind of rock that has obvious plastic and ductile deformation behavior (e.g. marble, chalk, mudstone, etc.). In order to investigate re-fracture mechanical behavior of rock material, three loading paths (Paths IV–VI) are also put forward for flawed coarse marble. The peak strength and deformation failure mode of flawed coarse marble are found depending on the loading paths (Paths IV–VI). Under lower confining pressures, the peak strength and Young’s modulus of damage sample (compressed until post-peak stress under higher confining pressure) are all lower compared with that of flawed sample; moreover mechanical parameter of damage sample is lower for the larger compressed post-peak plastic deformation of coarse marble. However under higher confining pressures (e.g. σ 3 = 30 MPa), the axial supporting capacity and elastic modulus of damage coarse marble (compressed until post-peak stress under lower confining pressure) is not related to the loading path, while the deformation modulus and peak strain of damage sample depend on the difference of initial confining pressure and post-peak plastic deformation. The friction among crystal grains determines the strength behavior of flawed coarse marble under various loading paths. In the end, the effect of loading path on failure mode of intact and flawed coarse marble is also investigated. The present research provides increased understanding of the fundamental nature of rock failure under different loading paths.  相似文献   

16.
Hancock and Cowling measured the critical crack tip opening displacements, δf, at fracture initiation in HY-80 steel specimens of six different configurations. δf varied from 90 μm in a deeply double-edge-cracked tensile panel to 900 μm in a single-edge-cracked tensile panel.McMeeking and Parks, and Shih and German have shown by their finite element calculations that the characteristics of the plane strain crack tip fields in both large scale yielding and general yielding are strongly dependent on specimen geometry and load level.In this study, the plane strain crack tip fields in the specimens tested by Hancock and Cowling were calculated using the finite element method. The crack tip triaxial tensile stress field is strongly affected by specimen geometric constraint, and the state of the triaxial tensile stress in a crack tip region is monitored by the ratio between the local tensile stress and the effective stress, i.e., ( ), at a distance x=2δ from the crack tip. The values of ( ) vary from 3.1 for the double-edge-cracked tensile panel to 1.7 for the single-edge-cracked tensile panel. The δf measured by Hancock and Cowling correlates very well with the ratio ( ). δf is a measure of the fracture ductility of the material ahead of the crack tip, and the ductility decreases with an increase in the triaxial tensile stress, i.e., the ratio ( ).  相似文献   

17.
损伤统计演化方程的性质和数值模拟   总被引:11,自引:0,他引:11  
通过对一种含成核尺寸效应的损伤统计演化方程性质的分析和数值模拟,揭示了损伤率主要是由微损伤在二维相空间中的前沿的运动所决定的这也就是Kachanov提出的损伤率演化方程的物理基础数值结果进一步显示了含成核尺寸效应模型在损伤发展上与-维模型的区别而且,由几种形式的细观动力学算出的损伤率与损伤的关系简单,可近似拟合为宏观上封闭的形式  相似文献   

18.
A short-term microdamage theory for porous transversely isotropic piezoelectric materials is set forth. Microdamages are modeled by pores. The fracture criterion for a microvolume of a transversely isotropic medium is assumed to have the Huber–Mises form. The ultimate strength is a random function of coordinates with an exponential or Weibull distribution. The stress–strain distribution and effective properties of the material are determined from the stochastic electroelastic equations. The deformation and microdamage equations are closed by the porosity balance equations. For various values of electric intensity, the microdamage–macrodeformation relationships and deformation curves are plotted. The effect of electric intensity on the microdamage of piezoelectric materials is studied  相似文献   

19.
Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90° and 180° is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress σ and electric field E or (σ,E) is replaced by strain ε and electric displacement D or (ε,D). Mixed conditions (σ,D) and (ε,E) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (Eyy) for negative Ey and (Dyy) for positive Dy while the mechanical conditions σy or εy are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth.  相似文献   

20.
The cohesive parameter corresponding to craze failure time is predicted for thermoplastics material. A craze failure separation criterion is proposed for a cohesive zone subjected to a melt layer formed and thickened by adiabatic deformation heat from a craze drawing. The numerical simulation of cohesive zone separation is based on non-linear thermal conduction and convection in the craze region and bulk region around the active layer, associated with a mechanical craze fibrils drawing in an uniaxial direction. The craze failure time is predicted with the assumption of the constant craze thickening rate and cohesive stress for a pipe-grade polyethylene. The numerically computed model reveals the inverse power law decay of the craze failure time, tf, with increasing in craze thickening rate, vc, (almost, tfVc−1) for the thermoplastics. The full notch impact test experimental results are consistent with the analysis prediction. It is concluded that the craze failure time can be theoretically predicted using the numerical modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号