首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An isotope-dilution electrospray ionization tandem mass spectrometry (ESI-MS/MS) method with an on-line sample clean-up device, for the quantitative analysis of human urine for the benzene exposure biomarker S-phenylmercapturic acid (SPMA), was developed and validated. The sample clean-up system was constructed from an autosampler, a reversed-phase C18 trap cartridge, a two-position switching valve, and controlling computer software and hardware. The sample clean-up system was interfaced via 1/20 splitting to the ESI source of a triple-quadrupole mass spectrometer using negative ion mode and multiple reaction monitoring for SPMA and the isotope-labeled internal standard. A strategy was adopted to acquire pooled blank urine matrix and quality control samples spiked with standards. Validated procedures and data on method specificity, detection limits, standard curves, precision and recovery, sample storage stability, and inter-laboratory comparison are presented. The analytical system was fully automated. No tedious manual sample clean-up procedures are required. With the selectivity and the sensitivity provided by ESI-MS/MS detection, the analytical system can be used for high-throughput and accurate determination of SPMA levels in human urine samples, as a biomarker for environmental as well as occupational benzene exposure.  相似文献   

2.
We have developed a novel sheath-flow interface for low-flow electrospray ionization mass spectrometry (ESI-MS) and capillary electrophoresis/electrospray mass spectrometry (CE/ESI-MS). The interface is composed of two capillaries. One is a tapered fused-silica ESI emitter suitable for microliter and nanoliter flow rate electrospray and the other is a tail-end gold-coated CE separation column that is inserted into the emitter. A sheath liquid is supplied between the column and the emitter capillaries. The gold coating and the sheath liquid are used as the conducting media for ESI and the CE circuit. This novel design was initially evaluated by an infusion ESI-MS analysis of the most common antiretroviral dideoxynucleosides, followed by CE/MS coupling analysis of several antidepressant drugs. With infusion studies, the effects of the sheath liquid and the sample flow rates on detection sensitivity and signal stability were investigated. For an emitter with an internal diameter of 30 microm, the optimum flow rates for the sheath and the sample were 200 and 300 nL/min, respectively. The main improvement of this approach in comparison with conventional sheath liquid approaches using an ionspray interface is the gain in sensitivity. Sensitivities were three times better for dideoxynucleosides analyzed by infusion and 12 times higher for antidepressant drugs analyzed by CE/MS with this interface compared with ionspray. The emitter is durable, disposable, and simple to fabricate.  相似文献   

3.
A comparison of different separation methods (high-performance liquid chromatography (HPLC), capillary HPLC (CHPLC) and pressurized capillary electrochromatography (pCEC)) coupled on-line with mass spectrometry (MS) is undertaken using the separation of a crude extract of ergot fungus (secalis cornuti) as an example. New and simple setups for a two-dimensional CHPLC coupled on-line with electrospray ionization (ESI)-MS (2D-CHPLC-MS) as well as for capillary size-exclusion chromatography performed under pCEC conditions and coupled on-line with ESI-MS (CSEC-pCEC-MS) are shown. In addition, an improved method for column packing is presented.  相似文献   

4.
We have used on-line sample clean-up, concentration, and chromatography with electrospray ionization mass spectrometry (ESI-MS), to characterize and determine the presence of disulfide bonds in recombinant full-length rat brain calbindin D28K and two deletion mutants of the protein, one lacking EF-hand 2 (calbindin delta 2) and the other lacking EF-hands 2 and 6 (calbindin delta 2,6). The molecular weights of the expressed proteins dissolved in biological buffers were determined with high accuracy using a low-flow, pressurized chamber infusion system, that allows on-line protein clean-up by removing buffers/salts incompatible with ESI-MS. The molecular weight determinations showed that the amino-terminal methionine residues had been cleaved during the expression and isolation of the recombinant proteins. Approximately 85-90% of the protein sequences were confirmed by on-line HPLC-ESI-MS analysis of peptides generated by a lysyl endoproteinase C digestion. Comparisons of ESI-MS spectra of native and reduced calbindin D28K and delta 2 show that the full length- and delta 2 mutant-protein contain one disulfide bond. Molecular mass determinations of calbindin delta 2,6 showed that this protein contains a highly active cysteine residue that covalently binds a mercaptoethanol group, or forms a homodimer via a disulfide bond. The results show surprising differences amongst the deletion mutants of calbindin D28K with respect to the formation of disulfide bonds. These differences are not readily detected by other techniques and show that ESI-MS is a powerful, rapid method by which to detect disulfide linkages for intact proteins.  相似文献   

5.
For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C(18) column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C(18) and a NH(2) column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI- modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CCalpha) were between 0.16 and 1 ng ml(-1) for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory.  相似文献   

6.
Both single nucleotide polymorphisms (SNPs) and mutations are commonly observed in the gene encoding the tumor suppressor protein, p53. SNPs occur at specific locations within genes whereas mutations may be distributed across large regions of genes. When determining nucleotide differences, mass spectrometry is the only method other than Sanger sequencing which offers direct structural information. Electrospray ionization (ESI) quadrupole mass spectrometry (MS) analysis of intact polymerase chain reaction (PCR) products was performed following a simple purification and on-line heating to limit ion adduction. The PCR products were amplified directly from genomic DNA rather than plasmids, as in our previous work. Two known polymorphisms of the p53 gene were genotyped. A cytosine (C) or guanine (G) transversion, designated C <--> G (G <--> C on the opposite strand), were each detected by a 40.0 Da change upon ESI quadrupole MS analysis. Using known PCR products as standards, the genotypes determined for 10 human samples corresponded with restriction fragment length polymorphism (RFLP) analysis. Cytosine/thymine (T) transitions, designated C <--> T (G <--> A on the opposite strand), were also genotyped by ESI-MS. This SNP is discriminated by a 15.0 Da change on one strand (C <--> T) and a 16.0 Da change on the other (G <--> A). Appropriate sample preparation and instrumental configuration (including heated sample inlet syringe and MS source), to limit adducts, are both vital for successful ESI quadrupole MS analysis of intact PCR products.  相似文献   

7.
Using electrospray ionization (tandem) mass spectrometry (ESI-MS(/MS)) spectrometric experiments, the Sandmeyer reaction was monitored on-line, and key intermediates were intercepted and characterized for the first time. The mechanistic information provided by on-line ESI-MS(/MS) is in accordance with Sandmeyer's proposal, and was made possible by coupling a microreactor on-line to the ESI ion source, which allowed reactions to be screened from 0.7-2.0 s, identifying and characterizing all intermediates that were formed and consumed during the reaction.  相似文献   

8.
Electrospray ionization mass spectrometry (ESI/MS) affords a rapid and sensitive technique for determining peptides produced by the enzymatic digestion of phosphoroteins. When coupled with on-line immobilized metal-ion affinity chromatography (IMAC), the combmation allows separation and mass spectrometric identification of phosphorylated and nonphosphorylated peptides. In this study, the feasibility and general applicability of on-line IMAC/ESI/MS is investigated by using immobilized ferric ions for selective chelation of several phosphotyrosine and phosphoserine peptides. The sensitivity and practicality of the technique for phosphoproteins are demonstrated via the analysis of 30 pmol (~0.7 μg) of bovine β-casein purified by sodium dodecylsulfate-polyacrylamide gel electrophoresis, electroblotted onto a polyvinylidene difluoride membrane, and digested in situ with trypsin. It is observed that on-line IMAC/ESI/MS suffers less from sample losses than experiments performed off-line, suggesting that the limiting factors in sensitivity for this technique are the purification procedures and sample handling rather than the IMAC and mass spectrometry. Thus, the ability to inject the tryptic digest of an electroblotted protein directly onto the column without buffer exchange and to analyze the eluent directly via on-line coupling of the IMAC column to the mass spectrometer greatly reduces sample losses incurred through sample handling and provides a convenient method for analyzing phosphopeptides at low levels.  相似文献   

9.
Mass spectrometry (MS) is a powerful technique for protein identification in proteomic research. Two-dimensional gel electrophoresis (2-DE) combined with MS is a significant method for protein separation and identification. For protein identification, peptide sequencing is usually carried out by an effective but expensive nano-flow liquid chromatographic system combined to tandem mass spectrometry (MS/MS). However, protein identification based on such method is time-consuming, and contamination may occur as a result of column overloading. In this study, we establish an alternative nanoscale system for protein identification using MS/MS. The system consists of several devices that can be purchased from commercial sources and can be connected to an electrospray ionization quadrupole-time of flight (ESI-Q-TOF) MS in order to analyze proteins from 2D gels. This inexpensive strategy provides an attractive alternative method for rapid identification of proteins using a nanospray source. In addition, the device is disposable so that contamination is avoided. It is shown that peptide sequencing based on this device using ESI-Q-TOF MS is accomplished within 10 min.  相似文献   

10.
Size-fractions from a soil humic acid were separated by preparative size-exclusion chromatography (SEC), desalted, and concentrated by ultrafiltration and vacuum centrifugation without being subjected to any freeze-drying process. After having assessed the lack of formation of any multiple-charged ions by high-resolution Fourier transform ion cyclotron resonance electrospray ionization (ESI) mass spectrometry (MS), the size-fractions were used by direct infusion to compare the molecular ion distribution by both atmospheric pressure chemical ionization (APCI)- and ESI-MS in negative mode. The weight- (Mw) and number-averaged (Mn) molecular weight obtained by ESI-MS were invariably larger than by APCI-MS for all size-fractions, thereby indicating that ESI is more efficient than APCI to evaluate the molecular mass distribution of humic samples. No substantial difference was observed when concentration and pH of unfreeze-dried humic size-fractions were varied. The negative mode was applied to assess the effect of cone voltage from −20 to −60 V on ESI of the humic size-fractions further separated through an on-line SEC column. The resulting mass spectra and Mw and Mn values suggested that the variation of cone voltage in ESI-MS affects the ionization potential of associated humic molecules more in solution rather than their fragmentation. These findings agree with previous observations which indicated a limitation of ESI in providing consistent mass detection for a complex mixture of heterogeneous humic molecules, especially when they are aggregated by a freeze-drying process.  相似文献   

11.
Authentic samples of whisky produced in Scotland and USA and counterfeit whisky samples commercialized in Brazil have been directly submitted to electrospray ionization mass spectrometry (ESI-MS) analysis in both the negative and positive ion modes to assess the potential of this technique for simple and rapid quality control and proof of authenticity of whisky samples. ESI in the negative ion mode yields the most characteristic whisky fingerprinting mass spectra in just a few seconds by direct infusion of the samples, detecting the most polar or acidic components of each sample in their deprotonated anionic forms. No pre-treatment of the sample, such as extraction or derivatization or even dilution, is required. The analysis of the ESI(-)-MS data both by simple visual inspection but more particularly by chemometric data treatment enables separation of the whisky samples into three unequivocally distinct groups: Scotch, American and counterfeit whisky, whereas single malt and blended Scotch whiskies are also distinguished to some extent. As indicated by ESI-MS/MS analysis, the diagnostic anions are simple sugars, disaccharides and phenolic compounds. Direct infusion ESI-MS therefore provides immediate chemical fingerprinting of whisky samples for type, origin and quality control, as demonstrated herein for American, Scottish and counterfeit samples, whereas ESI-MS/MS analysis of diagnostic ions adds a second dimension of fingerprinting characterization when improved selectivity is desired.  相似文献   

12.
陈静  刘召金  戴振宇  安保超  许群  张祥民 《色谱》2013,31(9):894-897
建立了一个简单、快速、有效的适用于质谱或液相色谱-质谱联用的在线固相萃取(SPE)高通量除盐方法。方法分为单柱和双柱模式,借助于包含双梯度泵(上样泵/分析泵)、自动进样器和配有十通切换阀的柱温箱的高效液相色谱系统,完成样品的自动化在线除盐。单柱模式通过上样泵实现在SPE柱上进样和除盐,被分析物则保留在SPE柱上;除盐完成后,通过阀切换利用分析泵洗脱富集在SPE柱上的被分析物。双柱模式则在单柱模式基础上增加了1根SPE柱,在色谱管理软件控制下2根SPE柱轮流工作,高效率完成样品的在线除盐。该方法在结合质谱分析蛋白质、多肽等领域具有较好的应用前景。  相似文献   

13.
Moini M  Huang H 《Electrophoresis》2004,25(13):1981-1987
We introduce capillary electrophoresis-mass spectrometry (CE-MS) as an efficient means for the on-line separation and identification of protein mixtures. It was found that while CE/electrospray ionization (ESI)-MS analysis of whole-cell lysate was too complicated for the one-dimensional CE-MS analysis, the technique was useful for the analysis of protein mixtures of moderate complexity (approximately 50 intact proteins). CE/ESI-MS was applied to the subcellular proteomics of ribosomal Escherichia coli. 55 out of the 56 ribosomal proteins were detected with ease by using only approximately 3.4 ng of ribosomal proteins. In addition, it was found that the mass accuracy of the conventional MS (such as quadrupole ion traps) was good enough to identify many post-translational modifications of the intact proteins by simply comparing their measured average molecular weight with the average molecular weight predicted from gene banks.  相似文献   

14.
Electrospray ionization mass spectrometry (ESI-MS), in conjunction with its tandem version ESI-MS/MS, is now established as a major tool to study reaction mechanisms in solution. This suitability results mainly from the ability of ESI to "fish" ions directly from solution to the gas phase environment of mass spectrometers. In this review, we summarize recent studies from our laboratory on the use of on-line monitoring by ESI-MS ion fishing of several types of reactions that permitted us to follow how these reactions progress as a function of both time and conditions using the ultra-high sensitivity and speed of ESI-MS to detect and even characterize transient reaction intermediates. We also show that the intrinsic reactivity of each key gaseous species fished by ESI can be further investigated via ESI-tandem mass spectrometry experiments, searching for the most active species via gas-phase ion/molecule reactions. In the gas-phase, solvent and counter-ion effects are absent. These studies often permit a detailed overview of major steps via the interception, characterization and reactivity investigation of key reaction players.  相似文献   

15.
A novel method for analysing polysaccharide materials is described which employs size-exclusion chromatography (SEC) followed by detection by on-line electrospray ionisation mass spectrometry (ESI-MS) and off-line matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). It is demonstrated through SEC/ESI ion trap mass spectrometry that the formation of multiply charged oligomer ions, which bind up to five sodium cations, allows the rapid analysis of polysaccharide ions with molecular weights in excess of 9 kDa. MALDI spectra generated from fractionation of the effluent collected from the same SEC separation are shown to be in good agreement with the ESI spectra with respect to molecular weight distributions and types of ions generated. ESI and MALDI mass spectra of samples obtained from sequential graded ethanol precipitation and SEC fractionation of acid and enzymatically digested arabinoxylan polysaccharides show important structural differences between polysaccharide fragments. In addition, a comparison is made between the mass spectra of native and permethylated SEC-separated fragments of acid and enzymatically treated arabinogalactan. Linkage information of the permethylated arabinogalactan oligomers can be rapidly established through the use of on-line SEC/ESI-MS( n) experiments.  相似文献   

16.
Three samples of albumin derived from human plasma (pharmaceutical grade, HSA) obtained from different commercial sources were investigated for their micro-heterogeneities by means of electrospray ionization (ESI) ion trap mass spectrometry (ITMS). The study covered MS analyses of the intact proteins as well as on the tryptic peptide level. The intact protein samples were analyzed without any separation step except for simple desalting. With these samples we observed in the positive ion ESI mass spectra that the multiply charged ion signals of HSA consisted of a number of fully or partly resolved peaks with relative intensities depending on the analyzed sample. The non-modified form of HSA was detected in the three HSA preparations at m/z values of 66448 +/- 3.6, 66450 +/- 0.6 and 66451 +/- 3.2 ([MH]+), respectively. The value calculated from the amino acid sequence was 66439. The second compound present with high intensity (in two cases the base peak in the deconvoluted mass spectrum) is interpreted as a modified HSA, and the molecular mass increase in relation to the unmodified HAS was between 116 and 118 Da (m/z of 66 564, 66 567 and 66 569), suggesting the presence of a covalently bound cysteine residue. A further peak in the deconvoluted ESI spectra was found in all three samples with rather low signal/noise ratio at m/z 66 619, 66 621 and 66 613, respectively, which may correspond to a non-enzymatic glycation described in the literature. The verification of the proposed covalent HSA modifications was subsequently done on the peptide level using high-performance liquid chromatography (HPLC)/ESI-MS and HPLC/ESI-MS/MS including low-energy collision-induced dissociation (CID). Prior to the tryptic digestion, the HSA samples were alkylated without a prior reduction step. Following this procedure we detected peptides of the sequence T21-41 that included the Cys-34 residue in both forms: cysteinylated (m/z 639.15 [M+4H]4+) as well as vinylpyridine-alkylated (m/z 635.69 [M+4H]4+, which means in its previously native free SH form). In the next step on-line LC/ESI low-energy CID MS/MS experiments were performed to verify these two proposed structures. By means of MS/MS analysis of the mentioned ions the described modification (cysteinylation) at the Cys-34 residue could be proven. This abundant modification of HSA in pharmaceutical-grade preparations could be unambiguously identified as cysteinylation at the Cys-34 residue. On the other hand, the proposed non-enzymatic glycation was not detectable on the peptide level in the on-line HPLC/ESI-MS mode, maybe due to the low concentration in the three samples under investigation.  相似文献   

17.
A sensitive, high performance liquid chromatography/tandem mass spectrometric (i.e. mass spectrometry/mass spectrometry; LC/MS/MS) method with on-line extraction and sample clean-up for the screening and confirmation of residues of sulfonamides in kidney is described. The sulfonamides are extracted from homogenized kidney with methanol. After centrifugation of the extract, an aliquot of the extract is directly injected on the LC/MS/MS system with further extraction and clean-up of the sample on-line. Detection of the analytes was achieved by positive electrospray ionization (ESI) followed by multiple reaction monitoring. For each sulfonamide the collisional decomposition of the protonated molecule to a common, abundant fragment ion was monitored. The method has been validated for sulfadimethoxine, sulfaquinoxaline, sulfamethazine, sulfamerazine, sulfathiazole, sulfamethoxazole, sulfadiazine and sulfapyridine. Calibration curves resulting from spiked blank kidney samples at the 10-200 microg/kg level showed good linear correlation. At the level of 50, 100 and 200 microg/kg both within- and between-day precision, as measured by relative standard deviation (RSD), were less than 16%. The limits of detection (LODs) ranged from 5 to 13.5 microg/kg. The recoveries ranged from 78 to 82%. The procedure provides a rapid, reliable and sensitive method for the determination of residues of sulfonamides in bovine kidney. The advantage of this method over existing methods is its decreased sample preparation and analysis time, which makes the method more suitable for routine analysis.  相似文献   

18.
A simplified protein precipitation/mixed-mode cation-exchange solid-phase extraction (PPT/SPE) procedure has been investigated. A mixture of acetonitrile and methanol along with formic acid was used to precipitate plasma proteins prior to selectively extracting the basic drug. After vortexing and centrifugation, the supernatants were directly loaded onto an unconditioned Oasis MCX microElution 96-well extraction plate, where the protonated drug was retained on the negatively charged sorbent while interfering neutral lipids, steroids or other endogenous materials were washed away. Normal wash steps were deemed unnecessary and not used before sample elution. The sample extracts were analyzed under both conventional and high-speed liquid chromatography/tandem mass spectrometry (LC/MS/MS) conditions to examine the feasibility of the PPT/SPE procedure for human plasma sample clean-up. For the conventional LC/MS/MS method, chromatographic separation was achieved on a C18, 2.1 x 50 mm column with gradient elution (k' = 5.5). The mobile phase contained 0.1% formic acid in water and 0.1% formic acid in acetonitrile. For the high-speed LC/MS/MS method, chromatographic separation was achieved on a C18, 2.1 x 10 mm guard column with gradient elution (k' = 2.2, Rt = 0.26 min). The mobile phase contained 0.1% formic acid in water and 0.001% trifluoroacetic acid in acetonitrile. Detection for both conventional and high-speed LC/MS/MS methods was by positive ion electrospray tandem mass spectrometry on a ThermoElectron Finnigan TSQ Quantum Ultra, where enhanced resolution (RP 2000; 0.2 amu) was used for high-speed LC/MS/MS. The standard curve, ranging from 0.5 to 100 ng/mL, was fitted to a 1/x weighted quadratic regression model.This combined PPT/SPE procedure effectively eliminated time-consuming sorbent conditioning and wash steps, which are essential for a conventional mixed-mode SPE procedure, but retained the advantages of both PPT (removal of plasma proteins) and mixed-mode SPE (analyte selectivity). The validation results demonstrated that this PPT/SPE procedure was well suited for both conventional and high-speed LC/MS/MS analyses. In comparison with a conventional mixed-mode SPE procedure, the simplified PPT/SPE process provided comparable sample extract purity. This simple sample clean-up procedure can be applied to other basic compounds with minor modifications of PPT solvents.  相似文献   

19.
Electrospray ionization mass spectrometry is used in lipidomics studies. The present research established a top-down liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) shotgun analysis method for phospholipids (PLs) using a normal-phase column or a C30 reverse-phase column with the data-dependent MS/MS scanning mode. A normal-phase column can separate most of the major different classes of PLs. By using LC/ESI-MS/MS with a normal-phase column, approximately 50 molecular species were identified in a PL mixture from rat liver. When the reverse-phase column was used, the PLs could be separated depending on their hydrophobicity, essentially the length of their fatty acyl chains and the number of unsaturated bonds in them. The LC/ESI-MS/MS method using a C30 reverse-phase column was applied to phosphatidylcholine (PC) and phosphatidylethanolamine (PE) mixtures as test samples. Molecular species with the same molecular mass but with different pairs of fatty acyl chains were separately identified. As a result, about 60 PC and 50 PE species were identified. PLs from rat liver were subjected to LC/ESI-MS/MS using the C30 reverse-phase column and about 110 molecular species were identified. Off-line two-dimensional LC/ESI-MS/MS with the normal-phase and C30 reverse-phase columns allowed more accurate identification of molecular species by using one-dimensional C30 reverse-phase LC/ESI-MS/MS analysis of the collected fractions.  相似文献   

20.
A fast and highly sensitive electrospray ionization tandem mass spectrometry (ESI-MS/MS) method has been developed for the simultaneous determination of morphine, 6-methylacetylmorphine (6-MAM), codeine, cocaine and benzoylecgonine (BZE) in hair from drug abusers. Pulverized hair samples were subjected to an optimized matrix solid phase dispersion (MSPD) procedure with alumina, followed by diluted hydrochloric acid elution on column solid-phase extraction (SPE) clean-up/pre-concentration. Alternatively, samples were also subjected to an optimized ultrasound assisted enzymatic hydrolysis (USEH) with Pronase E, followed by an off-line SPE clean up/pre-concentration procedure. Positive electrospray ionization and multiple reaction monitoring (MRM) with one precursor ion/product ion transition were used for the identification and quantification (deuterated analogues of each target as internal standards) of each analyte. The chromatographic pump and the autosampler were used for injecting the standards and the hair extracts (20 μL) as a flow injection analysis mode. The highest sensitivity was achieved when delivering the targets with an acetonitrile/water/formic acid (80/19.875/0.125) mixture. The limits of detection of the method were 39.2, 4.4, 6.8, 7.0 and 7.4 ng g(-1) for morphine, 6-MAM, codeine, cocaine and BZE, respectively. Relative standard deviations of intra- and inter-day precision were lower than 9 and 12%, respectively; whereas, analytical recoveries ranged from 96±5 to 106±4%. The developed method (MSPD-ESI-MS/MS) was applied to different hair samples from polydrug abusers, and results were statistically compared to those obtained after a conventional gas chromatography-mass spectrometry (GC-MS) analysis and also after USEH and ESI-MS/MS or GC-MS determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号