首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rotational diffusion of an ionic solute rhodamine 110 and a neutral solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) has been investigated in aqueous mixtures of cetyltrimethylammonium chloride (CTAC) and poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20 (P123). The purpose of this work is to understand how an increase in the mole ratio of surfactant to block copolymer from low to high influences the dynamics of ionic and neutral solute molecules. The variation in the mole ratio of CTAC to P123 from low to high has resulted in a drastic increase in the average reorientation time of rhodamine 110. In contrast, an exactly opposite trend has been noticed in the case of DMDPP. In the low mole ratio regime, rhodamine 110 and DMDPP are located at the interface and palisade layer, respectively, of P123 micelle-CTAC complexes. On the other hand, in the high mole ratio regime, both the probes are located in the Stern layer of CTAC-P123 complexes. The enhancement in the average reorientation time of rhodamine 110 with an increase in the mole ratio of surfactant to block copolymer has been rationalized on the basis of formation of rhodamine 110-Cl ion pair, which in turn associates with the cationic head groups of CTAC-P123 complexes. The observed decrease in the average reorientation time of DMDPP with an increase in the mole ratio of CTAC to P123 is a consequence of lower microviscosity of the Stern layer of CTAC-P123 complexes compared to the palisade layer of P123 micelle-CTAC complexes.  相似文献   

2.
The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.  相似文献   

3.
The interaction between the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) has been investigated by means of isothermal titration and differential scanning calorimetry (DSC) as well as static and dynamic light scattering (SLS and DLS). P123 self-assembles in water into spherical micelles at ambient temperatures. At raised temperatures, the DSC data revealed a sphere-to-rod transition of the P123 micelles around 60 degrees C. C12EO6 interacts strongly with P123 micelles in aqueous solution to give mixed micelles with a critical micelle concentration (cmc) well below the cmc for pure C12EO6. The presence of C12EO6 also lowers the critical micelle temperature of P123 so aggregation starts at significantly lower temperatures. A new phenomenon was observed in the P123-C12EO6 system, namely, a well-defined sphere-to-rod transition of the mixed micelles. A visual phase study of mixtures containing 1.00 wt % P123 showed that in a narrow concentration range of C12EO6 both the sphere-to-rod transition and the liquid-liquid phase separation temperature are strongly depressed compared to the pure P123-water system. The hydrodynamic radius of spherical mixed micelles at a C12EO6/P123 molar ratio of 2.2 was estimated from DLS to be 9.1 nm, whereas it is 24.1 nm for the rodlike micelles. Furthermore, the hydrodynamic length of the rods at a molar ratio of 2.2 is in the range of 100 nm. The retarded kinetics of the shape transition was detected in titration calorimetric experiments at 40 degrees C and further studied by using time-resolved DLS and SLS. The rate of growth, which was slow (>2000 s), was found to increase with the total concentration.  相似文献   

4.
A simple and elegant method based on steady-state fluorescence spectral measurement is demonstrated to study the interaction mechanism of copolymers and ionic surfactants with a suitable selection of fluorescent probe and also its general applicability in studying other systems. Three different concentration regions have been indicated from the changes in full width at half-maximum of the emission spectra and fluorescence intensity of coumarin 153 with the molar ratio of ionic surfactant to triblock copolymer (n). At low n values, copolymer-surfactant complexes are basically copolymer-rich micelles with few surfactant molecules, and at very high n values, copolymer-rich micelles are destroyed and surfactant-rich micelles with free copolymer monomers are formed. It has been observed that, in the intermediate surfactant concentration region, the transformation of a dominantly copolymer-rich complex to a mainly surfactant-rich complex can be either gradual incorporation of surfactants into the copolymer-rich micelles with freeing of copolymer units until surfactant-rich micelles are formed (type I) or simultaneous buildup of surfactant-rich micelles together with the destruction of copolymer-rich micelles (type II). The interaction mechanism for nonionic copolymers (P123 and F127) with ionic surfactants (SDS and CTAC) is mainly type II, but at higher copolymer concentrations interaction via the type I mechanism also operates. However, it is dominantly the type I mechanism that operates for common nonionic (TX100) and ionic surfactants.  相似文献   

5.
The interactions of sodium dodecyl sulfate (SDS) with the triblock copolymer L64 (EO13-PO30-EO13) and hexaethylene glycol mono-n-dodecyl ether (C12EO6) were studied using electromotive force, isothermal titration microcalorimetry, differential scanning microcalorimetry, and surface tension measurements. In certain regions of binding, mixed micelles are formed, and here we could evaluate an interaction parameter using regular solution theory. The mixed micelles of L64 with both SDS and C12EO6 exhibit synergy. When L64 is present in its nonassociated state, it forms polymer/micellar SDS complexes at SDS concentrations above the critical aggregation concentration (cac). The cac is well below the critical micellar concentration (cmc) of pure SDS, and a model suggesting how bound micelles are formed at the cac in the presence of a polymer is described. The interaction of nonassociated L64 with C12EO6 is a very rare example of strong binding between a nonionic surfactant and a nonionic polymer, and C12EO6/L64 mixed micelles are formed. We also carried out small angle neutron scattering measurement to determine the structure of the monomeric polymer/micellar SDS complex, as well as the mixed L64/C12EO6 aggregates. In these experiments, contrast matching was achieved by using the h and d forms of SDS, as well as C12EO6. During the early stages of the formation of polymer-bound SDS micelles, SDS aggregates with aggregation numbers of approximately 20 were found and such complexes contain 4-6 bound L64 monomers. The L64/C12EO6 data confirmed the existence of mixed micelles, and structural information involving the composition of the mixed micelle and the aggregation numbers were evaluated.  相似文献   

6.
The interactions between triblock copolymers of poly(ethylene oxide) and poly(propylene oxide), P103 and F108, EO(n)PO(m)EO(n), m=56 and n=17 and 132, respectively, and m-s-m type gemini surfactants, m=8, 10, 12, and 18, and s = 3, 6, 12, and 16, have been studied in aqueous solution using isothermal titration calorimetry and dynamic light scattering techniques. The enthalpograms of F108 as a function of surfactant concentration show one broad peak at polymer concentrations C(p) < or = 0.50 wt%, below the cmc of the copolymer at 25 degrees C. It is attributed to interactions between the surfactant and the triblock copolymer monomer. DLS results show hydrodynamic radii (R(h)) initially consistent with copolymer monomers that change to values consistent with gemini surfactant micelles as the surfactant concentration is increased. In P103 solutions at C(p) > or = 0.05 wt%, two peaks appear in the enthalpograms, and they are attributed to the interactions between the gemini surfactant and the micelle or monomer forms of the copolymer. An origin-based nonlinear fitting program was employed to deconvolute the two peaks and to obtain estimates of peak properties. An estimate of the fraction of copolymer in aggregated form was also obtained. The enthalpy change due to interactions between the surfactants and P103 aggregates is very large compared to values obtained for traditional surfactants. This suggests that extensive reorganization of copolymer aggregates and surrounding solvent occurs during the interaction. DLS results for the P103 systems containing C(p) > or = 0.05% show evidence of very large aggregates in solution, likely P103 micelle clusters. The transitions observed in the hydrodynamic radii are consistent with a breakdown of micelle clusters with addition of gemini surfactant, followed by mixed micelle formation and/or deaggregation into monomer P103. This is followed by interactions similar to those typically observed in surfactant-nonionic polymer systems. Mechanisms for the interaction and the observed structural changes are discussed.  相似文献   

7.
Molar volume and conductivity measurements have been carried out at 338.2 K for cetyltrimethylammonium chloride (CTAC) + H2O and CTAC + β-cyclodextrin (β-CD) + H2O systems. The apparent critical micelle concentrations, the dissociation degree of the micelle, the transfer free energy for the hydrocarbon chain of CTAC, the standard partial molar volumes of CTAC in aqueous β-CD solution and the stoichoimetry for the inclusion complex of CTAC with β-CD have been determined. The influence of β-CD and its complex on the micellization processes of CTAC are analyzed under this temperature. It is shown that β-CD partly screened the hydrophobic hydrocarbon chain of CTAC molecules from contact with the surrounding medium, and retarded the formation of CTAC micelles in a certain extent. The thermodynamic activity of CTAC is decreased. The β-CD and its complexes do not participate the formation of micelles of CTAC, and the complex have no effect on the micelle properties once the micelles are formed. Based on a simple model, the number of CH2 groups entered the cavity of β-CD was calculated. The result suggests that β-CD forms strong complex with CTAC, and the stoichoimetry is found to be 2:1. This supports our conductivity results.  相似文献   

8.
A rheological study of mixed micelles formed by PEO-PPO-PEO triblock copolymer P123 and nonionic surfactant C12EO6 in aqueous solutions has been carried out with the purpose of investigating the time dependence of a shape transition of the mixed micelles and characterizing the shape before and after the transition. The rheology results presented in this report give clear evidence that the P123-C12EO6 mixed micelle grows and changes gradually in shape from spherical to elongated (rodlike) geometry with increasing temperature. These results are in accordance with the results found in the parallel dynamic and static light scattering and calorimetrical investigation.1,2 By using steady-state rheology, the time dependence of the sphere-to-rod transition of the mixed micelle system was carefully followed with time and temperature as simultaneously recorded variables in the experiments. This was performed by a designed novel experimental procedure. A temperature ramp was applied at a rate of 2.6 degrees C/min from a temperature below to a temperature above the shape transition at a constant shear rate while the viscosity of the solution was measured. The investigation was limited to two different compositions, surfactant-to-copolymer molar ratios (MR=nC12EO6/nP123) of 2.2 and 6.0 with varying total concentration from 1.5 to 21 wt % in comparison with the neat component. At low concentration, a slow transition was observed, which indicated that the mixed micelles are still growing into rods for several minutes after reaching the final temperature. At a total concentration of 4.0 wt % and above, the system reached equilibrium quickly. A concentration-dependent kinetic process is therefore anticipated, which was also found in the time-resolved static light scattering experiments previously performed (L?f, D.; Schillén, K.; Olofsson, G.; Niemiec, A.; Loh, W. J. Phys. Chem. B 2007, 111, 5911). At concentrations above 10 wt %, shear-thinning behavior was observed for the mixed solutions, which strongly suggests the extended shape of the mixed micelles after the shape transition. The obtained zero-shear viscosity at the investigated molar ratios was found to be lower with higher molar ratios, which indicates that the mixed micelles both in the spherical and in the rodlike state becomes smaller with higher content of C12EO6. These results correlate well with the obtained results from the previous dynamic light scattering measurements on the same system (L?f, D.; Schillén, K.; Olofsson, G.; Niemiec, A.; Loh, W. J. Phys. Chem. B 2007, 111, 5911).  相似文献   

9.
通过测定十六烷基三甲基氯化铵(CTAC)+H_2O和CTAC+β-环糊精(β-CD) +H_2O体系在298.15K时的电导和密度,计算了一系列重要的热力学参数,如临界胶 束浓度、胶束离解主工、CTAC分子碳链从β-环糊精水溶液到胶束的转移自由能、 CTAC的标准偏摩尔体积以及CTAC和β-CD形成的包络物的计量比和包络常数等,结 果表明,β-CD对CTAC的胶束化有较显蓍的影响,由于CTAC的疏水碳链被β-CD空腔 包络,CTAC的热力学活度降低,削弱了其胶束的生成,但是,β-CD及其包络物基 本上不参与CTAC胶束的生成,而且一旦胶束形成,包络物对CTAC的胶束性质也没有 明显的影响,在简单模型的基础上不参与CTAC胶束的生成,而且一旦胶束形成,包 络对CTAC的胶束性质也没有明显的影响,在简单模型的基础上,计算了CTAC分子碳 链进入β-CD疏水空腔的CH_2基团的数目,从另一方面证明β-CD与CTAC分子形成了 包络物,当β-CD的浓度较高时,包络物的计量比为2∶1。  相似文献   

10.
The interactions between an oxyphenylethylene-oxyethylene nonionic diblock copolymer with the anionic surfactant sodium dodecyl sulfate (SDS) have been studied in dilute aqueous solutions by static and dynamic light scattering (SLS and DLS, respectively), isothermal titration calorimetry (ITC), and 13C and self-diffusion nuclear magnetic resonance techniques. The studied copolymer, S20E67, where S denotes the hydrophobic styrene oxide unit and E the hydrophilic oxyethylene unit, forms micelles of 15.6 nm at 25 degrees C, whose core is formed by the styrene oxide chains surrounded by a water swollen polyoxyethylene corona. The S20E67/SDS system has been investigated at a copolymer concentration of 2.5 g dm(-3), for which the copolymer is fully micellized, and with varying surfactant concentration up to approximately 0.15 M. When SDS is added to the solution, two different types of complexes are observed at various surfactant concentrations. From SLS and DLS it can be seen that, at low SDS concentrations, a copolymer-rich surfactant mixed micelle or complex is formed after association of SDS molecules to block copolymer micelles. These interactions give rise to a strong decrease in both light scattering intensity and hydrodynamic radius of the mixed micelles, which has been ascribed to an effective reduction of the complex size, and also an effect arising from the increasing electrostatic repulsion of charged surfactant-copolymer micelles. At higher surfactant concentrations, the copolymer-rich surfactant micelles progressively are destroyed to give surfactant-rich-copolymer micelles, which would be formed by a surfactant micelle bound to one or very few copolymer unimers. ITC data seem to confirm the results of light scattering, showing the dehydration and rehydration processes accompanying the formation and subsequent destruction of the copolymer-rich surfactant mixed micelles. The extent of interaction between the copolymer and the surfactant is seen to involve as much as carbon 3 (C3) of the SDS molecule. Self-diffusion coefficients corroborated light scattering data.  相似文献   

11.
Effect of electrostatic interaction on the location of a solubilized molecular probe with ionic character in a supramolecular assembly composed of a triblock copolymer, P123 ((ethylene oxide) 20-(propylene oxide) 70-(ethylene oxide) 20) and a cosurfactant cetyltrimethylammonium chloride (CTAC) in aqueous medium has been studied using steady-state and time-resolved fluorescence measurements. Coumarin-343 dye in its anionic form has been used as the molecular probe. In the absence of the surfactant, CTAC, the probe C343 prefers to reside at the surface region of the P123 micelle, showing a relatively less dynamic Stokes' shift, as a large part of the Stokes' shift is missed in the present measurements due to faster solvent relaxation at micellar surface region. As the concentration of CTAC is increased in the solution, the percentage of the total dynamic Stokes' shift observed from time-resolved measurements gradually increases until it reaches a saturation value. Observed results have been rationalized on the basis of the mixed micellar structure of the supramolecular assembly, where the hydrocarbon chain of the CTAC surfactant dissolves into the nonpolar poly(propylene oxide) (PPO) core of the P123 micelle and the positively charged headgroup of CTAC resides at the interfacial region between the central PPO core and the surrounding hydrated poly(ethylene oxide) (PEO) shell or the corona region. The electrostatic attraction between the anionic probe molecule and the positively charged surface of the PPO core developed by the presence of CTAC results in a gradual shift of the probe in the deeper region of the micellar corona region with an increase in the CTAC concentration, as clearly manifested from the solvation dynamics results.  相似文献   

12.
Conductivity and surface tension measurements have been carried out at temperatures between 298.15 K for cetyltrimethylammonium Chloride (CTAC) + H2O and CTAC + Cucurbit[7]uril (CB[7]) + H2O systems. The apparent critical micelle concentrations, the dissociation degree of the micelle, the hydrophobic contribution of the transfer free energy for the hydrocarbon chain of CTAC, the stoichoimetry and inclusion constants for the inclusion complex of CTAC with CB[7] have been determined. The influence of CB[7] and its complex on the micellization processes of CTAC is analyzed. It is shown that CB[7] partly screened the hydrophobic hydrocarbon chain of CTAC molecules from contact with the surrounding medium, and retarded the formation of CTAC micelles in a certain extent. CB[7] and the inclusion complex do not have any surface activity. The CB[7] and its complexes do not participate the formation of micelles of CTAC, and the complex has no effect on the micelle properties once the micelles are formed. The result suggests that β-CB[7] forms strong complex with CTAC, and the stoichoimetry is found to be 1:1, and the inclusion constants of CB[7]-CTAC complex are almost the same in different CB[7] solutions.  相似文献   

13.
The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.  相似文献   

14.
Electrostatic interactions of poly(sodium 2-(acrylamido)-2-methylpropanesulfonate) (PyPAMPS) labeled with pyrene and a rodlike micelle of dimethyloleylamine oxide (DMOAO), an amine oxide type surfactant, mixed with varying mole fractions (Y) of hexadecyltrimethylammonium chloride (CTAC), a cationic surfactant, were investigated by a fluorescence quenching technique using 3,4'-dimethylbenzophenone (DBP), a hydrophobic quencher, that can only reside in the micellar phase. Fluorescence measurements were performed under homogeneous conditions in the region 0Yc, the fluorescence was efficiently quenched by DBP-carrying DMOAO/CTAC mixed micelles, both steady-state and time-dependent fluorescence data indicating that the degree of the quenching and hence the extent of the complex formation increased significantly with increasing Y. Applying a kinetic model to the steady-state and time-dependent fluorescence data, the residence time for PyPAMPS in the polymer-micelle complex was calculated. The residence time was found to depend on both Y and mu, e.g., when Y was increased from 0.01 to 0.03, the residence time increased from 4 to 80 mus at mu=0.05 whereas little or no increase in the residence time was observed in this range of Y at mu=0.20. At this higher ionic strength, the residence time increased only moderately from 3 to 10 mus when Y was increased from 0.01 to 0.09.  相似文献   

15.
Excited-state proton transfer (ESPT) of pyranine (8-hydroxypyrene-1,3,6-trisulfonate, HPTS) is studied in a polymer-surfactant aggregate using femtosecond emission spectroscopy. The polymer-surfactant aggregate is a supramolecular assembly consisting of a triblock copolymer (PEO)(20)-(PPO)(70)-(PEO)(20) (P123) and a cationic surfactant, cetyltrimethylammonium chloride (CTAC). ESPT of the protonated species (HA) in HPTS leads to the formation of A(-). The dynamics of ESPT may be followed from the decay of the HA emission (at approximately 440 nm) and rise of the A(-) emission (at approximately 550 nm). Both steady-state and time-resolved studies suggest that ESPT of HPTS in P123-CTAC aggregate is much slower than that in bulk water, in P123 micelle, or in CTAC micelle. The ratio of the steady-state emission intensities (HA/A(-)) in P123-CTAC aggregate is 2.2. This ratio is approximately 50, 12, and 2 times higher than that respectively in water, in P123 micelle, and in CTAC micelle. Retardation of ESPT causes an increase in the rise time of the A(-) emission of HPTS. In P123-CTAC aggregate, A(-) displays three rise times: 30, 250, and 2400 ps. These rise times are longer than those in CTAC micelle (23, 250, and 1800 ps), in bulk water (0.3, 3, and 90 ps), and in P123 micelle (15 and 750 ps). The rate constants for initial proton transfer, recombination, and dissociation of the ion pair are estimated using a simple kinetic scheme. The slow fluorescence anisotropy decay of HPTS in P123-CTAC aggregate is analyzed in terms of the wobbling-in-cone model.  相似文献   

16.
The micellization of PEO-PPO-PEO block copolymers in p-xylene has been studied in the presence of CO2. With the application of CO2, some copolymers with suitable molecular weights and EO ratios can form reverse micelles with critical micellization pressure up to 5.8 MPa. For the copolymers with the same length of PO block, higher EO ratios facilitate reverse micelle formation. For the copolymers with the same composition, higher molecular weight is favorable to form reverse micelles. With the suitable composition and molecular weight, the critical micelle pressure (CMP) of copolymers decreases with the increase in the lengths of PEO and PPO blocks due to the hydrophilic and folding effects, respectively. Both the EO ratios and the molecular weights are important for the formation of reverse micelle. The reverse micelle solution can solubilize water with W0 (molar ratio of water to EO segment) up to 3.3.  相似文献   

17.
Solvation dynamics and anisotropy decay of coumarin 480 (C480) in a supramolecular assembly containing a triblock copolymer, PEO20-PPO70-PEO20 (Pluronic P123) and a surfactant, CTAC (cetyl trimethylammonium chloride) are studied by femtosecond up-conversion. In a P123-CTAC complex, C480 displays a significant (22 nm) red edge excitation shift (REES) in the emission maximum as lambda ex increases from 335 to 445 nm. This suggests that the P123-CTAC aggregate is quite heterogeneous. The average rotational relaxation time (tau rot) of C480 in a P123-CTAC complex decreases by a factor of 2 from 2500 ps at lambda ex = 375 nm to 1200 ps at lambda ex = 435 nm. For lambda ex = 375 nm, the probe molecules in the buried core region of P123-CTAC are excited and the solvation dynamics displays three components, 2, 60, and 4000 ps. It is argued that insertion of CTAC in P123 micelle affects the polymer chain dynamics, and this leads to reduction of the 130 ps component of P123 micelle to 60 ps in P123-CTAC. For lambda ex = 435 nm, which selects the peripheral highly polar corona region, solvation dynamics in P123-CTAC and P123 are extremely fast with a major component of <0.3 ps ( approximately 80%) and a 2 ps ( approximately 20%) component.  相似文献   

18.
Small angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been used to investigate the interaction of the water-soluble meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS(4)) with cationic cethyltrimethylammonium chloride (CTAC) micelles. To evaluate if the porphyrin protonation state affects its interaction with the micelle, both SAXS and EPR measurements were performed at pH 4.0 and 9.0. The best-fit SAXS curves were obtained assuming for CTAC micelle a prolate ellipsoidal shape in the absence and upon incorporation of 2-10 mM TPPS(4). SAXS results show that the presence of porphyrin impacts on micellar hydrophobic core, leading to a micellar reassembling into smaller micelles. Lineshapes of EPR spectra of 5- and 16-doxyl stearic acids (5- and 16-DSA, respectively) bound to 100 mM CTAC micelles exhibited slight changes as a function of porphyrin concentration. Spectral simulations revealed an increase of mobility restriction for both spin probes, especially at higher porphyrin concentration, where a small reduction of environment polarity was also observed for 16-DSA. The spin labels monitored only slight differences between pH 4.0 and 9.0, in agreement with the SAXS results.  相似文献   

19.
The phase behavior and self-assembled structures of perfluoroalkyl sulfonamide ethoxylate, C8F17SO2N(C3H7)(CH2CH2O)20H (abbreviated as C8F 17EO20), a nonionic fluorocarbon surfactant in an aqueous system, has been investigated by the small-angle X-ray scattering (SAXS) technique. The C8F17EO20 forms micelles and different liquid crystal phases depending on the temperature and composition. The fluorocarbon micellar structure induced by temperature or composition change and added fluorocarbon cosurfactant has been systematically studied. The SAXS data were analyzed by the indirect Fourier transformation (IFT) and the generalized indirect Fourier transformation (GIFT) depending on the volume fraction of the surfactant and complemented by plausible model calculations. The C8F17EO20 forms spherical type micelles above critical micelle concentration (cmc) in the dilute region. The micelle tends to grow with temperature; however, the growth is not significant on changing temperature from 15-75 degrees C, which is attributed to the higher clouding temperature of the surfactant (>100 degrees C). On the other hand, the micellar structure (shape and size) is apparently unaffected by composition (1-25 wt %) at 25 degrees C. Nevertheless, addition of fluorocarbon cosurfactant of structure C8F17SO2N(C3H7)(CH2CH2O)H (abbreviated as C8F17EO1) to the semidilute solution of C8F17EO20 (25 wt %) favors micellar growth, which finally leads to the formation of viscoelastic wormlike micelles, as confirmed by rheometry and supported by SAXS. The onset sphere-to-wormlike transition in the structure of micelles in the C8F17EO20/water/C8F17EO1 system is due to the fact that the C8F17EO1 tends to go to the surfactant palisade layer so that the critical packing parameter increases due to a decrease in the effective cross-sectional area of the headgroup. As a result, spherical micelles grow into a cylinder, which after a certain concentration entangle to form a rigid network structure of wormlike micelles.  相似文献   

20.
Effects of constituent block size of triblock copolymers on the nature of the water molecules in the corona region of their micelles have been investigated using time-resolved fluorescence measurements. The physical nature of the water molecules in the micellar corona region of the block copolymer, Pluronic F88 ([ethylene oxide (EO)]103-[propylene oxide (PO)]39-EO103), has been studied using a solubilized coumarin dye. Solvent reorientation time and rotational correlation time have been measured and compared with another block copolymer, Pluronic P123 (EO20-PO70-EO20), which has a different composition of the constituent PO and EO blocks. It is noted that due to the presence of larger number of EO blocks in F88 as compared with P123, the corona region of the former micelle is more hydrated than that of the latter. The solvent reorientation time and rotational correlation time are found to be relatively shorter for F88 as compared with P123. This indicates that the water molecules in the corona of the F88 micelle are more labile than those of P123, which is also supported from the estimated number of water molecules associated with each EO unit, measured from the size of each type of micelle and its aggregation number. To understand the effect of block size on the chemical reactions in these microheterogeneous media, electron transfer reactions have been carried out between different coumarin acceptors and N, N-dimethylaniline donor. The electron transfer results obtained in F88 micelles have been compared with those obtained in P123, and the results are rationalized on the basis of the relative hydration of the two triblock copolymer micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号