首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
Surface-enhanced resonance Raman scattering (SERRS) spectra of biological species are often different from their resonance Raman (RR) spectra. A home-designed Raman flow system is used to determine the factors that contribute to the difference between the SERRS and RR of met-myoglobin (metMb). The results indicate that both the degree of protein-nanoparticles interaction and the laser irradiation contribute to the structural changes and are responsible for the observed differences between the SERRS and RR spectra of metMb. The prolonged adsorption of the protein molecules on the nanoparticle surface, which is the condition normally used for the conventional SERRS experiments, disturbs the heme pocket structure and facilitates the charge transfer process and the photoinduced transformation of proteins. The disruption of the heme pocket results in the loss of the distal water molecule, and the resulting SERRS spectrum of metMb shows a 5-coordinated high-spin heme. The flow system, when operated at a moderately high flow rate, can basically eliminate the factors that disturb the protein structure while maintaining a high enhancement factor. The SERRS spectrum obtained from a 1 x 10 (-7) M metMb solution using this flow system is basically identical to the RR spectrum of a 5 x 10 (-4) M metMb solution. Therefore, the Raman flow system reported here should be useful for characterizing the protein-nanoparticles interaction and the native structure of proteins using SERRS spectroscopy.  相似文献   

2.
Both Class I (intact) and Class II (without the outer plastid membrane) chloroplasts of Spinacea oleracea exhibit a shrinkage of the thylakoid volume under conditions which lead to the well known light-induced light scattering increases. In the present report this shrinkage has been measured on micrographs prepared by the freeze-etch technique. In cloroplasts kept in darkness through the freezing or in those treated with DCMU prior to exposure to red light, the thylakoids are in a slightly swollen condition: in plastids exposed to red light and no inhibitor, the thylakoid membranes are closely appressed, giving the thylakoid a shrunken appearance relative to the control. It is further shown that Class I chloroplasts which are actively fixing CO2 do not give appreciable light scattering changes, but lowering the pH away from the optimum for ATP formation (and CO2 fixation) or adding the uncoupler quinacrine restores the light-induced scattering increases.  相似文献   

3.
This communication presents a new pathway for the more precise quantification of surface-enhanced Raman scattering (SERS) enhancement factor via deducing resonance Raman scattering (RRS) effect from surface-enhanced resonance Raman scattering (SERRS). To achieve this, a self-assembled monolayer of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) is formed on plasmon inactive glassy carbon (GC) and plasmon active GC/AuNP surface. The surfaces are subsequently used as common probes for electrochemical and Raman (RRS and SERRS) studies. The most crucial parameters required for the quantification of SERS substrate enhancement factor (SSEF) such as real surface area of GC/AuNPs substarte and the number of 4α-CoIITAPc molecules contributing to RRS (on GC) and SERRS (on GC/AuNPs) are precisely estimated by cyclic voltammetry experiments. The present approach of SSEF quantification can be applied to varieties of surfaces by choosing an appropriate laser line and probe molecule for each surface.  相似文献   

4.
This letter reports the first observation of both surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman scattering (SERRS) from the transition metal complex tris(2,2′-bipyridine)ruthenium (II), Ru(bpy)32+, adsorbed on a silver electrode from acetonitrile (ACN). The assignment of these spectra as valid examples of SERS and SERRS in a non-aqueous environment is based on the following criteria: (1) in situ demonstration of monolayer surface coverage of Ru(bpy)32+ using double potential step chronocoulometry (DPSCC); (2) the Raman signals are most intense after surface roughening by anodization; (3) the Raman spectra are potential dependent in the non-faradaic potential region; (4) the measured enhancement factors are greater ilian 106; (5) the surface spectra are frequency shifted relative to their bulk counterpart; and (6) several other molecules also exhibit non-aqueous SERS and SERRS behavior. These results are highly significant in that generality of surface enhanced Raman spectroscopy has been extended into the rich domain of nonaqueous electrochemistry.  相似文献   

5.
High-resolution resonance Raman (RR) and resonance Raman optical activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein backbone. Combining the intrinsic resonance properties of cytochrome c with the surface plasmon enhancement achieved with colloidal silver particles, the surface enhanced resonance Raman scattering (SERRS) and surface enhanced resonance ROA (SERROA) spectra of the protein were successfully obtained at concentrations as low as 1 microM. The assignments of spectral features were based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported, while some disparities were observed between the resonance ROA and SERROA spectra. These differences can be ascribed to perturbations of the physical properties of the protein upon adhesion to the surface of the silver colloids.  相似文献   

6.
This paper presents the results of a study performed to develop a rapid and straightforward method to resolve and simultaneously identify the light-harvesting proteins of photosystem I (LHCI) and photosystem II (LHCII) present in the grana and stroma of the thylakoid membranes of higher plants. These hydrophobic proteins are embedded in the phospholipid membrane, and their extraction usually requires detergent and time consuming manipulations that may introduce artifacts. The method presented here makes use of digitonin, a detergent which causes rapid (within less than 3 min) cleavage of the thylakoid membrane into two subfractions: appressed (grana) and non-appressed (stroma) membranes, the former enriched in photosystem II and the latter containing mainly photosystem I. From these two fractions identification of the protein components was performed by separating them by reversed-phase high-performance liquid chromatography (RP-HPLC) and determining the intact molecular mass by electrospray ionization mass spectrometry (ESI-MS). By this strategy the ion suppression during ESI-MS that normally occurs in the presence of membrane phospholipids was avoided, since RP-HPLC removed most phospholipids from the analytes. Consequently, high quality mass spectra were extracted from the reconstructed ion chromatograms. The specific cleavage of thylakoid membranes by digitonin, as well as the rapid identification and quantification of the antenna composition of the two complexes facilitate future studies of the lateral migration of the chlorophyll-protein complexes along thylakoid membranes, which is well known to be induced by high intensity light or other environmental stresses. Such investigations could not be performed by sodium dodecylsulfate-polyacrylamide gel electrophoresis because of insufficient resolution of the proteins having molecular masses between 22,000 and 25,000.  相似文献   

7.
The organization of pigment-protein complexes into large chiral macrodomains was investigated in wild-type and chlorophyll b-less mutant thylakoid membranes of barley. The variations in the anomalous circular dichroism bands and in the angular-dependence of circular intensity differential scattering showed that in wild-type chloroplasts, the formation of macrodomains was governed by interactions of the light-harvesting chlorophyll alb complexes (LHCII). Two external factors could be identified which regulate the parameters of the anomalous circular dichroism signal: (i) electrostatic screening by divalent cations under conditions that favor membrane stacking and (ii) the osmotic pressure of the medium, which is suggested to affect the lateral interactions between complexes and influence the packing-density of particles. These two factors governed preferentially the negative and the positive anomalous circular dichroism signals, respectively. In the chlorina f-2 mutant thylakoid membranes, deficient in most chlorophyll b binding proteins, the formation of macrodomains which gave rise to the anomalous circular dichroism signals was still regulated by these same external factors. However, in the absence of major LHCII polypeptides the formation of macrodomains was apparently mediated by other complexes having weaker interaction capabilities. As a consequence, the size of the macrodomains under comparable conditions appeared smaller in the mutant than in the wild-type thylakoid membranes. Circular dichroism is a valuable probe for examining the long-range interactions between pigment-protein complexes which participate in the formation and stabilization of membrane ultrastruc-ture. A functional role of macrodomains in long-range energy migration processes is proposed.  相似文献   

8.
Graham D  Fruk L  Smith WE 《The Analyst》2003,128(6):692-699
A number of methods for detecting specific DNA sequences have been used to provide data for use in diagnosis of disease states and examination of gene expression. This study shows how the use of labelled oligonucleotides created by Diels Alder cycloaddition can be used as surface enhanced resonance Raman scattering (SERRS) active probes that provide easily identifiable signals at low concentrations in a mixture. The probes were produced by first tagging the oligonucleotides with a furan residue at the 5'-terminus to act as the diene. Three specifically designed benzotriazole azo maleimide dyes were then used as dienophiles to undergo cycloaddition with the furan modified oligonucleotide to generate SERRS active probes. These probes gave excellent SERRS signals from a silver-PVA film. Surface mapping of the silver PVA film indicated that the distribution of the dyes was uniform and that the number of moles of probe detected at any one time was approximately in the attomole region.  相似文献   

9.
Faulds K  Smith WE  Graham D 《The Analyst》2005,130(8):1125-1131
This Education article outlines the different ways in which surface enhanced resonance Raman scattering (SERRS) can be used for the detection of DNA. The use of various different SERRS detection strategies that have allowed both sensitive and selective detection to be obtained is covered. Detection of DNA by SERRS involves the use of a dye with the DNA, whether as an intercalator or by direct covalent attachment. This generates strong SERRS signals that indicate the presence of the specific DNA sequence. The SERRS detection of DNA in different molecular biological assays is also discussed.  相似文献   

10.
We have observed simultaneously temporal fluctuation of surface-enhanced resonance Raman scattering (SERRS) and its background-light emission from single Ag nanoaggregates that were adsorbed with metal-free tetraphenylporphine (H(2)TPP) molecules. We found that temporally stable SERRS spectra showed clearly a SERRS band that is attributed to a stretching mode of a chemical bond between a carbon atom and a non-hydrogenated nitrogen atom (C(alpha)-N). This stretching mode was not observed in regular resonance Raman spectra which are free from surface enhancement. On the other hand, we also found that temporally unstable SERRS spectra did not clearly show a C(alpha)-N stretching mode in SERRS bands. Furthermore, temporally stable SERRS spectra were accompanied by temporally stable background-light emission. Kobayashi et al. [J. Phys. Chem. 1985, 89, 5174] reported that formation of an Ag-N bond between surface Ag atoms and non-hydrogenated N atoms in a pyrrole ring enhances the intensity of a C(alpha)-N stretching mode. Thus, the observed relationship between clear appearance of a C(alpha)-N stretching mode and temporal stability of SERRS plus background-light emission strongly suggests that formation of a stable Ag-N bond suppresses fluctuation of both SERRS and background-light emission. Furthermore, the observed relationship implies that chemical contribution to SERRS is stabilization of H(2)TPP molecules that are adsorbed on SERRS-active sites by formation of Ag-N bonds. Additionally, we attributed background-light emission to luminescence of complexes between H(2)TPP molecules and surface Ag atoms considering possible formation of Ag-N bonds, synchronized SERRS intensity with background-light emission intensity, blue-shifted background-light emission maxima from normal fluorescence maxima, and previous reports related to electronic structures of H(2)TPP molecules on Ag surfaces.  相似文献   

11.
The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per microm2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per microm2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 microm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to + 200 degrees C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.  相似文献   

12.
The chlorophyll fluorescence and the photosynthetic oxygen evolution (flash-induced oxygen yield patterns and oxygen bursts under continuous irradiation) were investigated in the thylakoid membranes with different stoichiometry and organization of the chlorophyll-protein complexes. Data show that the alteration in the organization of the photosystem II (PS II) super complex, i.e. the amount and the organization of the light-harvesting chlorophyll a/b protein complex (LHCII), which strongly modifies the electric properties of the membranes, influences both the energy redistribution between the two photosystems and the oxygen production reaction. The decrease of surface electric parameters (charge density and dipole moments), associated with increased degree of LHCII oligomerization, correlates with the strong reduction of the energy transfer from PS II to PSI. In the studied pea thylakoid membranes (wild types Borec, Auralia and their mutants Coeruleovireus 2/16, Costata2/133, Chlorotica XV/1422) with enhanced degree of oligomerization of LHCII was observed: (i) an increase of the S(0) populations of PS II in darkness; (ii) an increase of the misses; (iii) an alteration of the decay kinetics of the oxygen bursts under continuous irradiation. There is a strict correlation between the degree of LHCII oligomerization in the investigated pea mutants and the ratio of functionally active PS II alpha to PS II beta centers, while in thylakoid membranes without oligomeric structure of LHCII (Chlorina f2 barley mutant) the PS II alpha centers are not registered.  相似文献   

13.
The surface enhanced resonance Raman spectroscopy (SERRS) of a series of tris(2,2′-bipyridine)ruthenium(II) complexes on chemically produced silver films is reported. The SERR spectra of [Ru(bipy)3]2+, several tris complexes of Ru(II) containing substituted 2,2′-bipyridine (4,4′-dimethyl-,4,4′diphenyl-, 4,4′-diamino- and 4,4′-diethylcarboxylate-2,2′-bipyridine) ligands and the neutral cis-bis complexes [Ru(bipy)2(NCS)2] and [Ru(bipy)2Cl2] show very high band intensities. The large enhancement arises from the combination of the inherent resonance Raman effect and the surface plasmon resonance (due to the rough nature of the silver film). The molecules are not chemisorbed on the silver surface and hence the enhancement occurs solely via the electromagnetic mechanism. Ale SERR spectra are virtually free of the fluorescence which dominates the corresponding RR spectra thus illustrating the use of SERRS in the vibrational spectroscopy of strongly luminescing species. The SERRS spectra of the substituted 2,2′-bipyridine complexes are discussed.  相似文献   

14.
The direct electron transfer reaction of fructose dehydrogenase (FDH) from Gluconobacter sp. on alkanethiol-modified silver nanoparticles (AgNPs) was examined using cyclic voltammetry and surface-enhanced resonance Raman scattering (SERRS). Using cyclic voltammetry, catalytic oxidation currents (based on the direct electron transfer reaction of FDH) were observed from a potential of approximately −100 mV (vs. Ag/AgCl, 3 M NaCl) in the presence of d-fructose, without a mediator. A comparison of the SERRS spectra and the resonance Raman spectra of FDH in solution indicated that the heme c site retained its six-coordinated low-spin heme after immobilization. Moreover, SERRS also demonstrated that the heme c of the adsorbed FDH was the electron transfer site within the enzyme.  相似文献   

15.
We demonstrate in this work that 2-μm-sized Ag (μAg) powders can be used as a core material for constructing biomolecular sensing/recognition units operating via surface-enhanced resonance Raman scattering (SERRS). This is possible because μAg powders are very efficient substrates for both the diffuse reflectance IR and the surface-enhanced Raman scattering–SERRS spectroscopic characterization of molecular adsorbates prepared in a similar manner on silver surfaces. Besides, the agglomeration of μAg particles in a buffer solution can be prevented by the layer-by-layer deposition of cationic and anionic polyelectrolytes such as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). In this particular study, we used rhodamine B isothiocyanate (RhBITC) as a SERRS marker molecule, and μAg powders adsorbed consecutively with RhBITC and PAH–PAA bilayers were finally derivatized with biotinylated poly(l-lysine). On the basis of the nature of the SERRS peaks of RhBITC, those μAg powders were confirmed to selectively recognize streptavidin molecules down to concentrations of 10−10 g mL−1. Since a number of different molecules can be used as SERS–SERRS marker molecules, the present method proves to be an invaluable tool for multiplex biomolecular sensing/recognition via SERS and SERRS.  相似文献   

16.
Douglas P  Stokes RJ  Graham D  Smith WE 《The Analyst》2008,133(6):791-796
A micro-bead sandwich assay for P38 mitogen-activated protein kinase using surface enhanced resonance Raman spectroscopy (SERRS) detection is reported. Monoclonal capture antibodies were immobilised on a solid phase of magnetic micro-beads with secondary detection using a rhodamine-labelled antibody. Quantitative SERRS detection of the secondary antibody was possible with a limit of detection of 9.5 x 10(-12) mol dm(-3). The sandwich assay was quantitative and sensitive to 6 ng ml(-1). The mechanism of the SERRS detection in the immunoassay was investigated. The addition of SERRS aggregating agents causes the dissociation of the immuno-complex from the magnetic beads. Scanning electron microscopy images indicate that the colloidal suspension rather than adsorbed silver nanoparticles on the beads provide the SERRS signals, that the aggregate size is partially controlled and that there is some inhomogeneity in the distribution of organic matter on the nanoscale.  相似文献   

17.
We analyze blinking in surface enhanced resonance Raman scattering (SERRS) and surface enhanced fluorescence (SEF) of rhodamine 6G molecules as intensity and spectral instability by electromagnetic (EM) mechanism. We find that irradiation of intense NIR laser pulses induces blinking in SERRS and SEF. Thanks to the finding, we systematically analyze SERRS and SEF from stable to unstable using single Ag nanoparticle (NP) dimers. The analysis reveals two physical insights into blinking as follows. (1) The intensity instability is inversely proportional to the enhancement factors of decay rate of molecules. The estimation using the proportionality suggests that separation of the molecules from Ag NP surfaces is several angstroms. (2) The spectral instability is induced by blueshifts in EM enhancement factors, which have spectral shapes similar to the plasmon resonance. This analysis provides us with a quantitative picture for intensity and spectral instability in SERRS and SEF within the framework of EM mechanism.  相似文献   

18.
Membrane fusion between two lipid membranes with different curvatures was measured by using a fluorescence fusion assay for lipid vesicle systems and was also obtained by measuring lipid monolayer surface tension upon the fusion of vesicles to monolayer membranes. For such membrane systems, it was found that when lysolipid was incorporated only in the membrane with a greater curvature, membrane fusion was more suppressed than those for the case where the same amount (molar ratio of lysolipid to non-lysolipids) of lysolipid was incorporated only in the membrane with a lower curvature. When lysolipid was incorporated only in a flat membrane (e.g., monolayer) and the fusion of small vesicles (SUV) to the monolayer was measured, suppression of membrane fusion by lysolipid was minimal. It is known that lysolipid lowers the surface energy of curved membranes, which stabilizes energetically such membrane surfaces, and thus suppresses membrane fusion. Our results support our theory of lipid membrane fusion where the membrane fusion occurs through the most curved membrane region at the contact area of two interacting membranes.  相似文献   

19.
《先进技术聚合物》2017,28(11):1357-1365
Hairy nanocellulose (NC) was prepared by in‐situ admicellar polymerization of styrene on NC surface in the presence of cetyltrimethylammonium bromide through a stepwise fashion. It was also tried to achieve three hairy NCs with different polystyrene (PS) brush contents (i.e. 40, 50, and 80%) through altering monomer initial concentration. Then, NC and three hairy NCs were separately added into cellulose acetate (CA) solutions to fabricate membranes via the phase inversion technique. Transmission electron microscope images show that NC and three hairy NCs are spherical‐shaped nanoparticles. Results of Fourier transform infrared spectra provide clear evidence of PS brush being attached to the NC surfaces. Thermal gravimetric analysis confirms that increasing styrene initial concentration leads to enhanced PS content of hairy NCs. Results also elucidate that dispersions of prepared hairy NCs are highly stable even at high loading levels. It was found that incorporation of 1 wt% hairy NC with optimum brush content of 50% within CA membranes results in the increasing membrane water permeability from 7 to 40 l/m2 hr with no change in its selectivity. Indeed, new interactions induced by PS brushes at hairy NC/CA interfaces result in the creation of connected channels at the interfaces which facilitate water transport through the membrane. This study provides insights into the key role that PS brushes play in overcoming the dispersion problems of NC in nonpolar media and offers guidelines to tailor channels within hairy NC/CA membrane for enhanced filtration performance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The high light‐induced bleaching of photosynthetic pigments and the degradation of proteins of light‐harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein‐deficient mutant lut2, with the aim of unraveling the role of lutein for the degree of bleaching and degradation. By the means of absorption spectroscopy and western blot analysis, we show that the lack of lutein leads to a higher extent of pigment photobleaching and protein degradation in mutant thylakoid membranes in comparison with wt. The highest extent of bleaching is suffered by chlorophyll a and carotenoids, while chlorophyll b is bleached in lut2 thylakoids during long periods at high illumination. The high light‐induced degradation of Lhca1, Lhcb2 proteins and PsbS was followed and it is shown that Lhca1 is more damaged than Lhcb2. The degradation of analyzed proteins is more pronounced in lut2 mutant thylakoid membranes. The lack of lutein influences the high light‐induced alterations in organization of pigment–protein complexes as revealed by 77 K fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号