首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemiluminescence (CL) accompanying the reaction of U4+ with O2 in 0.0004–0.1M HClO4 was studied. It was found that the electron-excited uranyl ion (UO2 2+)* is the CL emitter. The fact that the reaction rate and the CL yield increase as the solution acidity decreases was explained by different reactivities of the U aq 4+ aquation and the products of its stepwise hydrolysis, UOH3+ and U(OH)2 2+, toward O2. Based on the results of analysis of the chain-radical mechanism of the reaction between U4+ and O2, it was concluded that transfer of an electron from the UO2 + ion to the oxidizing agent (a ·OH radical) is the most plausible elementary step of the reaction of (UO2 2+)* formation. It was found that the reaction rate, as well as the CL yield, increase substantially in the presence of uranyl ion. Catalytic action of UO2 2+ was explained by the formation of a UO2 2+·UO2 + complex, which reduces the rate of the UO2 + disproportionation reaction (UO2 + is an intermediate of the reaction and is involved in chain propagation), and by regeneration of the active center, UO2 +, in the reaction of UO2 2+ with U4+. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1522–1528, September, 2000.  相似文献   

2.
Osmotic coefficients and water activities for the Li2B4O7+LiCl+H2O system have been measured at T=273.15 K by the isopiestic method, using an improved apparatus. Two types of osmotic coefficients, φ S and φ E, were determined. φ S is based on the stoichiometric molalities of the solute Li2B4O7(aq), and φ E is based on equilibrium molalities from consideration of the equilibrium speciation into H3BO3,B(OH)4 and B3O3(OH)4. The stoichiometric equilibrium constants K m for the aqueous speciation reactions were estimated. Two types of representations of the osmotic coefficients for the Li2B4O7+LiCl+H2O system are presented with ion-interaction models based on Pitzer’s equations with minor modifications: model (I) represents the φ S data with six parameters based on considering the ion-interactions between three ionic species of Li+, Cl, and B4O72−, and model (II) for represents the φ E data based on considering the equilibrium speciation. The parameters of models (I) and (II) are presented. The standard deviations for the two models are 0.0152 and 0.0298, respectively. Model (I) was more satisfactory than model (II) for representing the isopiestic data.  相似文献   

3.
Isopiestic molalities and water activities have been measured for the Li2B4O7+LiCl + H2O system at T=298.15 K using an improved isopiestic apparatus. Two types of osmotic coefficients, φ S and φ E, were determined, where φ S is based on the stoichiometric molalities of the solute Li2B4O7(aq) and φ E is based on equilibrium molalities calculated by consideration of the equilibrium speciation of Li2B4O7 to partially form H3BO3, B(OH)4 and B3O3(OH)4. The stoichiometric equilibrium constant K m for the aqueous speciation reaction was estimated. Two representations of the osmotic coefficients of Li2B4O7 + LiCl + H2O were made with Pitzer’s ion-interaction model. Model (1) involved representing the φ S values with six parameters based on considering the ionic interactions between Li+, Cl, and B4O72−; and model (2) involved representing the φ E values based on the calculated equilibrium speciation. Reasonable agreements were obtained between the experimental osmotic coefficient data and those calculated using the above models, with standard deviations of 0.075 and 0.0229, respectively, for these two models. The thermodynamic osmotic coefficients for the complex system containing polymeric boron anions and lithium cation was modelled and explained by use of Pitzer’s ion-interaction model, with minor modifications in combination with speciation reaction equilibria.  相似文献   

4.
Fullerenyl radicals (FR) RC60 · and chemiluminescence (CL) are generated in the presence of O2 in C60—R3Al (R = Et, Bui) solutions in toluene (T = 298 K). The FR are formed due to the addition of the R· radical, which is an intermediate of R3Al autooxidation, to C60. Mass spectroscopy and HPLC were used to identify EtnC60Hm (n, m = 1–6), EtpC60 (p = 2–6), and dimer EtC60C60Et as stable products of FR transformations. As found by ESR, the EtC60 · radical (g = 2.0037) is also generated by photolysis of solutions obtained after interaction in the (C60— R3Al)—O2 system. In the presence of dioxygen, the FR is not oxidized but yields complexes with O2, which appear as broadening of the ESR signals. Chemiluminescence arising in the (C60—R3Al)—O2 system is much brighter (I max = 1.86·108 photon s−1 mL−1) than the known background CL (I max = 6.0·106 photon s−1 mL−1) for the autooxidation of R3Al and is localized in a longer-wavelength spectral region (λmax = 617 and 664 nm). This CL is generated as a result of energy transfer from the primary emitter 3CH3CHO* to the products of FR transformation: RnC60Hm, RpC60, and EtC60C60Et. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 205–213, February, 2007.  相似文献   

5.
Lithium insertion into manganese dioxide polymorphs in aqueous electrolytes   总被引:2,自引:0,他引:2  
The electrochemical behaviour of the spinel-like LiMn2O4 was studied in non-aqueous and aqueous saturated alkali nitrate electrolytes in comparison with the layered manganese dioxide δ-MnO2. The results obtained by galvanostatic and cyclic voltammetry techniques showed that the insertion of Li+/e or H+/e depends on both the host lattice and the type of electrolyte. The spinel-like LiMn2O4 preferably allowed the insertion of Li+/e in non-aqueous and aqueous saturated LiNO3 electrolytes, as observed from the similarity of the electrochemical behaviour in these electrolytes and the stability of the structure. This was explained by the presence of a three-dimensional network of vacant tetrahedral and half-filled octahedral sites in LiMn2O4, which guarantee high mobility of Li+ ions. The layered manganese dioxide could be inserted by Li+/e only in non-aqueous electrolytes. The work described herein was carried out at the Institut für Anorganische und Analytische Chemie, Technische Universit?t Berlin, Germany  相似文献   

6.
以共沉淀法与煅烧法联用,成功制备了一系列ZnAl2O4:xMn样品。通过扫描电镜和X射线粉末衍射测试研究了样品的形貌和物相特征,结果表明尖晶石结构的ZnAl2O4中[AlO6]的八面体位可以有效被Mn4+替代。通过荧光激发和发射光谱研究了样品的发光性能,发现Mn4+在ZnAl2O4体系中掺杂可以显示出明亮的红色发光(发射峰值位于680 nm处)。比较不同Mn4+浓度(Mn与Al的物质的量之比)掺杂样品的发光强度时发现,Mn4+最佳掺杂浓度为0.06%。通过德克斯特公式分析了发光强度与浓度关系,探究浓度猝灭机制,结果表明最邻近离子之间能量传递造成Mn4+浓度猝灭的发生。为了提高Mn4+的发光强度,选择了7种金属离子(Li+、Na+、K+、Ca2+、Sr2+、Sn2+和Ga3+)与Mn4+共掺杂进入ZnAl2O4基质中,其中效果较突出的为Li+和Ga3+,其共掺杂使Mn4+发光强度分别增强0.6倍和1倍。  相似文献   

7.
The reactivity of fullerene C60 toward peroxy radicals RO2 · was tested by the chemiluminescence method. A comparison of the influence of C60 and known inhibitors on the kinetics of liquid-phase chemiluminescence (CL) during oxidation of a series of hydrocarbons (ethyl-benzene, cyclohexane, n-dodecane, and oleic acid) shows that the fullerene does not react with the RO2 · radicals. A sharp decrease in the CL intensity observed upon C60 addition is caused by the quenching of CL emitters with fullerene but not by inhibition of hydrocarbon oxidation. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1808–1811, August, 2005.  相似文献   

8.
Photothermoluminescence (PTL) of petroleum luminophores of pyrolytic origin was studied over a wide temperature range (−196 to 250°C). Problems related to the mechanism and stages of photochemical processes in petroleum luminophores are discussed. It was revealed that low-temperature PTL maximums at −165, −108, and −75°C are due to recombination of trapped electrons with radical cations of polycyclic aromatic hydrocarbons (PAHs) during the freezing out of the motions of H, O2, and R·. High-temperature (relative to the luminophore freezing points) PTL maximums at 52, 105–120, and 130–140°C are due to processes associated with the oxidation of R·, PAHs, and olefins by 3O2 and 1O2.  相似文献   

9.
The A1, O, AlO, A12O, Al2O2, WO2, and WO3, partial pressures in the vapor over Al2O3 in a tungsten Knudsen effusion cell between 2300 and 2600 K were derived from A1+, O+, AlO+, A12O+, Al2O2+, WO2+, and WO3+, ion intensities. The mass spectrometer was calibrated against the equilibrium constant of the WO3(g) = WO2(g) + O(g) reaction. Refined values of the ionization cross sections of AlO and A12O2 were used in the partial pressure calculations. The enthalpies of atomization of aluminum suboxides were determined to be Δat H o(AlO, g, 0) = 510.7 ± 3.3 kJ mol−1, Δat H o(Al2O, g, 0) = 1067.2 ± 6.9 kJ mol−1, and Δat H o(Al2O2, g, 0) = 1556.7 ± 9.9 kJ mol−1.  相似文献   

10.
The electronic state of platinum supported on SO4/ZrO2, SO4/TiO2, SO4/Al2O3, and SO4/SiO2 systems and on systems unpromoted by sulfur was investigated by diffuse-reflectance IR spectroscopy using CO as the probe molecule. The introduction of SO4 2− anions increases the electron deficit on platinum particles. This suppresses the formation of bridging CO complexes with the metal, leads to the high-frequency shift of absorption maxima of CO adsorbed in the linear form, and stabilizes positively charged metal species (Ptδ+ and Pt+) during the reduction process. The formation of the positively charged species includes the interaction between the acidic protons and the metal particles yielding [Pt−H]δ+ adducts. The extent of the influence of the support on the electronic state of the metal increases in the series SO4/SiO2<SO4/Al2O3<SO4/TiO2<SO4/ZrO2 in parallel with an increase in the strength of the acid sites in the system. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1094–1099, June, 1998.  相似文献   

11.
The rates of reduction of Cu(II) with H2O2 have been measured in NaCl and NaBr solutions and mixtures with NaClO4 as a function of pH (6 to 9), temperature (5 to 45°C) and ionic composition (0.1 to 6M). The effect of pH on the rates was found to be independent of temperature and ionic composition. The rates increased as a function of [H+] raised to the power of 1.3 to 1.6. Speciation calculations indicate that this pH dependence can be attributed to Cu(OH)2 being the reactive species. The rate constants in NaCl and NaBr and mixtures with NaClO4 were independent of ionic strength, but proportional to the halide concentration raised to the power of 2.0 (0.2 to 2.6M). These results can be attributed to Cu(OH)2Cl 2 2− being the reactive species to reduction with H2O2. The Cu(I) halide complexes formed from the reduction are not easily oxidized with O2 or H2O2. The faster rates in Br solutions, which form stronger complexes with Cu+, support this contention. Measurements made in NaCl with added NaHCO3, NaB(OH)4 EDTA, NTA and glycine were also made. These measurements indicate that the CuL complexes (L=B(OH) 4 , CO 3 2− , EDTA, NTA, and glycine) are not very reactive to reduction with H2O2. The addition of Mg2+ or Ca2+ caused the rates to increase due to the formation of MgL or CaL complexes and the resultant release of reactive Cu2+.  相似文献   

12.
Quenching of fluorescence of polycyclic aromatic hydrocarbons (PAH), namely, naphthalene, anthracene, 9,10-diphenylanthracene, 9,10-dibromoanthracene by C60 fullerene in ethylbenzene at 293 K was found and investigated. The phenomenon is characterized by abnormally high values of bimolecular rate constants for quenching (k bim = (0.18–6.78)·1012 L mol−1 s−1) determined from the Stern—Volmer dependence of the PAH fluorescence intensity on the C60 concentration and occurs through the inductive-resonance (dominant channel) and exchange-resonance (minor channel) energy transfer from 1PAH* to C60. The overlap integrals of the PAH fluorescence spectra with the C60 absorption spectrum and the critical energy transfer distances were calculated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 432–436, March, 2007.  相似文献   

13.
A chemiluminescence (CL) method for the determination of humic acid (HA) based on the oxidation of HA with hydrogen peroxide in the presence of formaldehyde in alkaline solution is described. This method is sensitive and selective for the determination of HA in natural water. HA produces strong CL in the oxidation of HA with MnO4, Br2, ClO, and Cr2O72−, and the H2O2. HA-H2O2-HCHO system is suitable for the determination of HA because of its high sensitivity and high selectivity. The detection limit was 50 ppb and relative standard deviation for five measurements of 0.5 ppm (w/w) HA was 1.8%. Cations such as Na+, K+, Mg2+, Cu2+, and Fe3+ and anions such as PO43−, NO3, CO32−, SO42−, Cl, and Y (EDTA-Na) did not interfere with the determination of HA. Addition of Mn(II) increased the CL intensity. The concentration of HA in natural water determined with this method is in good agreement with that determined by fluorometric analysis.  相似文献   

14.
Dysprosium-sensitized chemiluminescence (CL) reactions have been suggested for the determination of enoxacin (ENX), fleroxacin (FLX), pefloxacin (PFX) and pipemidic acid (PPA). The CL conditions of Dy+3-ENX-MnO4-S2O3−2-HNO3, Dy+3-FLX-MnO4-S2O3−2-H6P4O13, Dy+3-PFX-MnO4-S2O3−2-HCl, and Dy+3-PPA-MnO4-S2O3−2-H2SO4 systems were investigated and optimized. The CL spectra are formed from the narrow characteristic emission of Dy+3 at 482 and 578 nm through the intermolecular energy transfer from the excited SO2* to analyte, followed by intramolecular energy transfer from analyte* to Dy+3. The calibration curves for the four analytes have good linearity. The relative standard deviations (RSDs) are in the range of 1.6–1.9% for 11 determinations of 6.0 × 10−8 g/mL of ENX, FLX, PFX, and PPA. The detection limits (3σ) are in the range of 2.2 × 10−10–6.0 × 10−10 g/mL. The proposed four CL-based methods have high sensitivity, precision and potential capability for the determination of residues of quinolone synthetic antibiotics in foods and biological samples.  相似文献   

15.
Electrochromism is defined as the persistent but reversible optical change (usually transmission) produced electrochemically. The preparation by the sol-gel process of thin films made of amorphous or crystalline nanoparticles of WO3, V2O5, Nb2O5, TiO2, CeO2, Fe2O3 and mixed compounds such as WO3−TiO2, CeO2−TiO2, CeO2−SnO2, have opened remarkable new opportunities for obtaining electrochromic layers exhibiting large optical transmission variation in the UV, visible or infrared range and acceptable kinetics under H+ or Li+ insertion. In this paper we give an overview of what has been recently achieved in this field, with emphasis for cathodic electrochromic coatings of Nb2O5 and TiO2 composition. Finally we stress the future developments in this fast growing field.  相似文献   

16.
Studies on photo-catalytic reduction of CO2 using TiO2 photo-catalyst (0.1%, w/v) as a suspension in water was carried out at 350 nm light. CO2 from both commercially available source, as well as generated in situ through 2-propanol oxidation, was used for this study. The photolytic products such as hydrogen (H2), carbon monoxide (CO) andmethane (CH4) generated were monitored in TiO2 suspended aqueous solution with and without a hole scavenger, viz., 2-propanol. Similar photolytic experiments were also carried out with varying ambient such as air, O2, N2 and N2O. The yields of CO and CH4 in all these systems under the present experimental conditions were found to be increasing with light exposure time. H2 yield in N2-purged systems containing 2-propanol was found to be more as compared to the without 2-propanol system. The rate of H2 production in N2-purged aqueous solutions containing 0.1% TiO2 suspension were evaluated to be 0.226 and 5.8 μl/h, without and with 0.5 M 2-propanol, respectively. This confirmed that 2-propanol was an efficient hole scavenger and it scavenged photo-generated holes (h+), allowing its counter ion, viz., e, to react with water molecule/H+ to yield more H2. The formation of both CO and CH4 in the photolysis of CO2-purged aqueous solutions containing suspended TiO2 in absence of 2-propanol reveal that the generation of CH4 is taking place mainly through CO intermediate. In presence of air/O2, the yield of H2 in the system without 2-propanol was observed to be negligible as compared to the system containing 2-propanol in which low yield of H2 was obtained with a formation rate of approx. 0.5 μl/h.  相似文献   

17.
The formation of secondary fullerene ozonides (SFOs) in the ozonolysis of C60 solutions in CCl4 has reliably been determined for the first time; SFOs are accumulated during the whole ozonolysis time as a suspension in CCl4. Hydrolysis of the SFOs results in chemiluminescence (CL) (I max = 2.65·108 photon s−1 mL−1), whose spectra contain maxima at 558, 608, and 685 nm. The most probable CL emitters are excited fullerene polyketones. Hydrogen peroxide was identified as a stable hydrolysis product of the SFOs by the color reaction with diphenylcarbazide and CL arisen upon the addition of an aqueous solution of FeSO4·9H2O to the hydrolyzate of the SFO. Chemiluminescence upon hydrolysis is a selective test for SFOs and allows one to find them in a complex mixture of the ozonolysis products of C60. The rate constant and activation energy of SFO hydrolysis were determined from the kinetic measurements of CL. For SFO hydrolysis several probable reactions were proposed, including the formation of the CL emitters, and their heat effects were estimated using the PM3/RHF and AM1/RHF semiempirical methods for one-and two-cage model structures of SFOs. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1322–1329, August, 2006.  相似文献   

18.
Protonation sites in methyl nitrate (1) were evaluated computationally at the Gaussian 2(MP2) level of ab initio theory. The methoxy oxygen was the most basic site that had a calculated proton affinity of PA = 728–738 kJ mol−1 depending on the optimization method used to calculate the equilibrium geometry of the CH3O(H)-NO2+ ion (2+). Protonation at the terminal oxygen atoms in methyl nitrate was less exothermic; the calculated proton affinities were 725, 722, and 712 kJ mol−1 for the formation of the syn-syn, anti-syn, and syn-anti ion rotamers 3a+, 3b+, and 3c+, respectively. Ion 2+ was prepared by an ion-molecule reaction of NO2+ with methanol and used to generate the transient CH3O(H)-NO2. radical (2) by femtosecond collisional electron transfer. Exothermic protonation of 1 produced a mixture of 3a+–3c+ with 2+ that was used to generate transient radicals 3a–3c. Radical 2 was found to be unbound and dissociated without barrier to methanol and NO2. Radicals 3a–3c were calculated to be weakly bound. When formed by vertical neutralization, 3a–3c dissociated completely on the 4.2 μs time scale of the experiment. The main dissociations of 3a–3c were formations of CH3O. + HONO and CH3ONO + OH.. The gas-phase chemistry of radicals 3a–3c and their dissociation products, as studied by neutralization—reionization mass spectrometry, was dominated by Franck—Condon effects on collisional neutralization and reionization. The adiabatic ionization energies of 3a–3c were calculated as 7.54, 7.57, and 7.66 eV, respectively.  相似文献   

19.
New mixed ligand complexes of the following stoichiometric formulae: M(2-bpy)2(RCOO)2·nH2O, M(4-bpy)(RCOO)2·H2O and M(2,4’-bpy)2(RCOO)2·H2O (where M(II)=Zn, Cd; 2-bpy=2,2’-bipyridine, 4-bpy=4,4′-bipyridine, 2,4′-bpy=2,4′-bipyridine; R=C2H5; n=2 or 4) were prepared in pure solid-state. These complexes were characterized by chemical and elemental analysis, IR and conductivity studies. Thermal behaviour of compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The final products of pyrolysis of Cd(II) and Zn(II) compounds were metal oxides MO. A coupled TG/MS system was used to analyse of principal volatile products of thermal decomposition or fragmentation of Zn(4-bpy)(RCOO)2·H2O under dynamic air and argon atmosphere. The principal species correspond to: C+, CH+, CH3 +, C2H2 +, HCN+, C2H5 + or CHO+, CH2O+ or NO+, CO2 +, 13C16O2 + and 12C16O18O+ and others; additionally CO+ in argon atmosphere.  相似文献   

20.
Nanotube Li-Ti-O compound with high surface (198.6 m2·g−1) was prepared by a method involving the treatment of nanotube Na2Ti2O5·H2O in molten LiNO3 and characterization by means of transmission electron microscopy (TEM), energy-dispersive spectra (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetry-differential thermal analysis (TG/DTG). Results show that the nanotube Li-Ti-O compound prepared by this method involves two crystal phases: spinel Li2Ti2O4 and anatase LixTiO2 (x < 0.1). Li+ exhibits different Li1s binding energy in the two crystal phases. In ambient air, the Li-Ti-O compound adsorbs water easily, and the chemically adsorbed water is difficult to remove below 400°C. Translated from Chinese Journal of Inorganic Chemistry, 2006, 22(12): 2135–2139 [译自: 无机化学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号