首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra and a combination of the latter two. Three classification techniques were objectively compared: linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel as linear techniques and LS-SVM with radial basis function kernel as a nonlinear technique. Classifiers were evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic (ROC) curve (AUC) was used as a global performance measure on test data. In general, all techniques obtained a high performance when using peak integration values with or without MR imaging intensities. For example for low- versus high-grade tumours, low- versus high-grade gliomas and gliomas versus meningiomas, the mean test AUC was higher than 0.91, 0.94, and 0.99, respectively, when both MR imaging intensities and peak integration values were used. The use of metabolic data from MRSI significantly improved automated classification of brain tumour types compared to the use of MR imaging intensities solely.  相似文献   

2.
Ultra-high-field 7 T magnetic resonance (MR) scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7 T human single-voxel MR Spectroscopy (MRS) studies have shown significant increases in signal-to-noise ratio (SNR) and spectral resolution as compared to lower magnetic fields but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7 T MR spectroscopic imaging. The goal of this study was to develop specialized radiofrequency (RF) pulses and sequences for three-dimensional (3D) MR spectroscopic imaging (MRSI) at 7 T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7 T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high-SNR phased-array 3D MRSI from the human brain.  相似文献   

3.
A 3 T MLEV-point-resolved spectroscopy (PRESS) sequence employing optimized spectral-spatial and very selective outer-voxel suppression pulses was tested in 25 prostate cancer patients. At an echo time of 85 ms, the MLEV-PRESS sequence resulted in maximally upright inner resonances and minimal outer resonances of the citrate doublet of doublets. Magnetic resonance spectroscopic imaging (MRSI) exams performed at both 3 and 1.5 T for 10 patients demonstrated a 2.08+/-0.36-fold increase in signal-to-noise ratio (SNR) at 3 T as compared with 1.5 T for the center citrate resonances. This permitted the acquisition of MRSI data with a nominal spatial resolution of 0.16 cm3 at 3 T with similar SNR as the 0.34-cm3 data acquired at 1.5 T. Due to the twofold increase in spectral resolution at 3 T and the improved magnetic field homogeneity provided by susceptibility-matched endorectal coils, the choline resonance was better resolved from polyamine and creatine resonances as compared with 1.5 T spectra. In prostate cancer patients, the elevation of choline and the reduction of polyamines were more clearly observed at 3 T, as compared with 1.5 T MRSI. The increased SNR and corresponding spatial resolution obtainable at 3 T reduced partial volume effects and allowed improved detection of the presence and extent of abnormal metabolite levels in prostate cancer patients, as compared with 1.5 T MRSI.  相似文献   

4.
Magnetic resonance spectroscopic imaging (MRSI) is a noninvasive technique for producing spatially localized spectra. MRSI presents the important challenge of reducing the scan time while maintaining the spatial resolution. The preferred approach for this is to use time-varying readout gradients to collect the spatial and chemical-shift information. Fast, three-dimensional (3D) spatial encoded methods also reduce the scan time. Despite the existence of several new and faster 3D encoded methods, or k-space trajectories, for magnetic resonance imaging (MRI), only stack of spirals and echo planar have been studied in 3D MRSI. A novel formulation for designing fast, 3D k-space trajectory applicable to 3D MRSI is presented. This approach is simple and consists of rays expanding from the origin of k-space into a revolving sphere, collecting spectral data of all 3D spatial k-space at different times in the same scan. This article describes this new method and presents some results of its application to 3D MRSI. This technique allows some degree of undersampling; hence, it is possible to reconstruct high-quality undersampled spectroscopic imaging in order to recognize different compounds in short scan times. Additionally, the method is tested in regular 3D MRI. This proposed method can also be used for dynamic undersampled imaging.  相似文献   

5.

Purpose

The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques.

Methods

The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods.

Results

The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions.

Conclusion

The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA.  相似文献   

6.
Spectral analysis of short TE in vivo proton magnetic resonance spectroscopic imaging (MRSI) data are complicated by the presence of spectral overlap, low signal to noise and uncharacterized signal contributions. In this study, it is shown that an automated data analysis method can be used to generate metabolite images from MRSI data obtained from human brain at TE = 25 ms and 1.5 T when optimized pulse sequences and a priori metabolite knowledge are used. The analysis approach made use of computer simulation methods to obtain a priori spectral information of the metabolites of interest and utilized a combination of parametric spectral modeling and non-parametric signal characterization for baseline fitting. This approach was applied to data from optimized PRESS-SI and multi-slice spin-echo SI acquisitions, for which sample spectra and metabolite images are shown.  相似文献   

7.
Decrease of the human brain temperature was induced by intranasal cooling. The main purpose of this study was to compare the two magnetic resonance methods for monitoring brain temperature changes during cooling: phase-difference and magnetic resonance spectroscopic imaging (MRSI) with high spatial resolution. Ten healthy volunteers were measured. Selective brain cooling was performed through nasal cavities using saline-cooled balloon catheters. MRSI was based on a radiofrequency spoiled gradient echo sequence. The spectral information was encoded by incrementing the echo time of the subsequent eight image records. Reconstructed voxel size was 1×1×5 mm3. Relative brain temperature was computed from the positions of water spectral lines. Phase maps were obtained from the first image record of the MRSI sequence. Mild hypothermia was achieved in 15–20 min. Mean brain temperature reduction varied in the interval <−3.0; − 0.6>°C and <−2.7; − 0.7>°C as measured by the MRSI and phase-difference methods, respectively. Very good correlation was found in all locations between the temperatures measured by both techniques except in the frontal lobe. Measurements in the transversal slices were more robust to the movement artifacts than those in the sagittal planes. Good agreement was found between the MRSI and phase-difference techniques.  相似文献   

8.
Truncation artifacts arise in magnetic resonance spectroscopic imaging (MRSI) of the human brain due to limited coverage of k-space necessitated by low SNR of metabolite signal and limited scanning time. In proton MRSI of the head, intense extra-cranial lipid signals “bleed” into brain regions, thereby contaminating signals of metabolites therein. This work presents a data acquisition strategy for reducing truncation artifact based on extended k-space coverage achieved with a dual-SNR strategy. Using the fact that the SNR in k-space increases monotonically with sampling density, dual-SNR is achieved in an efficient manner with a dual-density spiral k-space trajectory that permits a smooth transition from high density to low density. The technique is demonstrated to be effective in reducing “bleeding” of extra-cranial lipid signals while preserving the SNR of metabolites in the brain.  相似文献   

9.
OBJECTIVES: The objectives of this study were to develop protocols that measure abdominal fat and calf muscle lipids with magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), respectively, at 3 T and to examine the correlation between these parameters and insulin sensitivity. MATERIALS AND METHODS: Ten nondiabetic subjects [five insulin-sensitive (IS) subjects and five insulin-resistant (IR) subjects] were scanned at 3 T. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were segmented semiautomatically from abdominal imaging. Intramyocellular lipids (IMCL) in calf muscles were quantified with single-voxel MRS in both soleus and tibialis anterior muscles and with magnetic resonance spectroscopic imaging (MRSI). RESULTS: The average coefficient of variation (CV) of VAT/(VAT+SAT) was 5.2%. The interoperator CV was 1.1% and 5.3% for SAT and VAT estimates, respectively. The CV of IMCL was 13.7% in soleus, 11.9% in tibialis anterior and 2.9% with MRSI. IMCL based on MRSI (3.8+/-1.2%) were significantly inversely correlated with glucose disposal rate, as measured by a hyperinsulinemic-euglycemic clamp. VAT volume correlated significantly with IMCL. IMCL based on MRSI for IR subjects was significantly greater than that for IS subjects (4.5+/-0.9% vs. 2.8+/-0.5%, P=.02). CONCLUSION: MRI and MRS techniques provide a robust noninvasive measurement of abdominal fat and muscle IMCL, which are correlated with insulin action in humans.  相似文献   

10.

Purpose

To present proton magnetic resonance spectroscopy and diffusion-weighted imaging (DWI) findings of central neurocytoma (CN).

Methods and Materials

Imaging findings of seven patients with the histopathological diagnosis of CN (five male and two female; age range, 21–28 years of age) were evaluated retrospectively. In addition to conventional magnetic resonance imaging features, we also assessed the metabolite ratios and tumor normalized apparent diffusion coefficient (NADC), which was calculated by dividing the tumor apparent diffusion coefficient (ADC) values by normal ADC. Approval from our institutional review board was obtained for this review.

Results

The tumor choline/creatine ratios were 5.17±2.38, while N-acetyl aspartate/choline and N-acetyl aspartate/creatine ratios were 0.33±0.15 and 1.84±1.38, respectively. On DWI, tumors had heterogeneous hyperintense appearances when compared with the contralateral parietal lobe white matter and tumor NADC values were 0.63±0.05.

Conclusion

Significantly increased choline/creatine and decreased N-acetyl aspartate/choline ratios with lower NADC values in CN resemble high-grade gliomas and complicate the diagnosis. Familarity its physiologic features would help to presurgical diagnosis of ventricular and exraventricular CNs.  相似文献   

11.
Magnetic resonance spectroscopic imaging (MRSI) provides information about the spatial metabolic heterogeneity of an organ in the human body. In this way, MRSI can be used to detect tissue regions with abnormal metabolism, e.g. tumor tissue. The main drawback of MRSI in clinical practice is that the analysis of the data requires a lot of expertise from the radiologists. In this article, we present an automatic method that assigns each voxel of a spectroscopic image of the brain to a histopathological class. The method is based on Canonical Correlation Analysis (CCA), which has recently been shown to be a robust technique for tissue typing. In CCA, the spectral as well as the spatial information about the voxel is used to assign it to a class. This has advantages over other methods that only use spectral information since histopathological classes are normally covering neighbouring voxels. In this paper, a new CCA-based method is introduced in which MRSI and MR imaging information is integrated. The performance of tissue typing is compared for CCA applied to the whole MR spectra and to sets of features obtained from the spectra. Tests on simulated and in vivo MRSI data show that the new method is very accurate in terms of classification and segmentation. The results also show the advantage of combining spectroscopic and imaging data.  相似文献   

12.
We describe the first results of a new magnetic resonance imaging (MRI) system specially developed for hand and wrist imaging. The system uses a small resistive water-cooled magnet with a vertical magnetic field of 0.1 T in an air gap of 15 cm. The console is based on a microcomputer with a vector signal processor and an image-processing board. There is actually no Faraday cage. For the whole hand, the in-plane spatial resolution is less than 1 mm in the 128 × 128-pixels format for typical slice thicknesses of 3 to 5 mm. Solenoidal volume coils for fingers were developed, giving, in the same matrix format, an in-plane high spatial resolution of 0.22 mm for a typical slice thickness of 3 mm.  相似文献   

13.
PURPOSE: The purpose of this study was to evaluate differences in the degrees of contrast enhancement effects of small hepatocellular carcinomas (HCCs) in patients with cirrhosis between helical computed tomography (CT) and magnetic resonance (MR) imaging during multiphasic contrast-enhanced dynamic imaging and to determine the diagnostic value of MR imaging especially in assessing hypovascular HCCs detected as hypoattenuating nodules on late-phase CT. SUBJECTS AND METHODS: This study included 64 small HCCs (<3 cm in diameter) in 40 patients with chronic hepatitis or cirrhosis who underwent multiphasic (arterial, portal and late phases) contrast-enhanced dynamic helical CT and MR imaging. The contrast enhancement patterns of each lesion in the arterial and late phases were evaluated by two radiologists experienced in liver MR imaging and categorized as one of five grades (1=hypoattenuated/hypointense; 2=slightly hypoattenuated/hypointense; 3=isoattenuated/isointense; 4=slightly hyperattenuated/hyperintense; 5=hyperattenuated/hyperintense), compared with the surrounding liver parenchyma. RESULT: Forty-three (67%) of 64 lesions showed Grade 4 (n=24) or Grade 5 (n=19) enhancement on arterial-phase CT, while 51 (80%) of 64 lesions showed Grade 4 (n=20) or Grade 5 (n=31) enhancement on arterial-phase MR imaging, indicating hypervascular HCCs. The grading score of hypervascular HCCs on arterial-phase MR imaging (mean: 4.61) was significantly (P<.01) higher than that for hypervascular HCCs on arterial-phase CT (mean: 4.20), showing better detection of the hypervascularity (arterial enhancement) of the lesion on arterial-phase MR imaging. Regarding hypovascular HCCs, all (100%) of 21 hypovascular HCCs on CT showed Grade 1 (n=10) or Grade 2 (n=11) enhancement on late-phase CT, seen as hypoattenuation. In contrast, 8 (62%) of 13 hypovascular HCCs on MR imaging showed Grade 1 (n=1) or Grade 2 (n=7) enhancement on late-phase MR imaging, seen as hypointensity. Grading scores of hypovascular HCCs on late-phase images were significantly (P<.001) lower on CT than on MR imaging (mean score: 1.52 vs. 2.31), indicating better washout effects for hypovascular HCCs on late-phase CT. CONCLUSION: The washout effects for small HCCs on late-phase MR imaging were inferior to those for small HCCs on late-phase CT. Especially, hypovascular HCCs demonstrated as hypoattenuating nodules on late-phase CT were often not seen on late-phase MR imaging, requiring careful evaluation of other sequences, including unenhanced T(1)-weighted and T(2)-weighted MR images.  相似文献   

14.
The goal of this study was to develop and evaluate high-resolution magnetic resonance spectroscopic imaging (MRSI) utilizing the gains in signal-to-noise ratio (SNR) provided by combining higher magnetic field with high-sensitivity phased-array (PA) coils. We investigated the maximum improvement in spatial resolution as small as 0.09 cm(3) for brain MRSI while maintaining adequate SNR and acquisition time. The use of low peak power, dual-band spectral-spatial pulses was also investigated for application to 3 T MRSI of the brain using the body coil for radiofrequency excitation and PA coils for signal reception.  相似文献   

15.
The high sensitivity but poor specificity of magnetic resonance imaging for detecting breast cancer has stimulated interest in magnetic resonance spectroscopic imaging (MRSI) as a tool to improve specificity and reduce the number of benign biopsies. The challenge of applying 1H MRSI to the diagnosis of cancer in the human breast is the need for robust lipid suppression and a clinically acceptable acquisition time. We present an improved 1H MRSI technique that uses an independently optimized chemical-shift-selective for lipid suppression and weighted elliptical k-space sampling combined with a Hamming filter for improved sampling efficiency.  相似文献   

16.
活体多片磁共振谱成像(MRSI)产生大量的波谱数据,因此需要使用自动的谱数据分析方法来获得不同组织代谢产物的定量分布图.然而,活体波谱通常产生严重的谱和基线变形,使得基于曲线拟合的谱定量数据分析方法失效.该文应用多尺度分析(Multiscale)方法自动确定兴趣代谢物在频率空间的谱峰特征(位置和线宽),然后通过叠代运算对该代谢物对应的谱峰进行独立的自动相位矫正和线型拟合.大脑波谱成像的实验结果表明,该方法可以方便、有效的获得代谢产物在大脑的分布,特别适宜于多片磁共振谱成像的代谢产物定量分析.  相似文献   

17.
Functional magnetic resonance imaging (MRI) in the nonhuman primate promises to provide a much desired link between brain research in humans and the large body of systems neuroscience work in animals. We present here a novel high field, large-bore, vertical MR system (7 T/60 cm, 300 MHz), which was optimized for neuroscientific research in macaque monkeys. A strong magnetic field was applied to increase sensitivity and spatial resolution for both MRI and spectroscopy. Anatomical imaging with voxel sizes as small as 75×150×300 μm3 and with high contrast-to-noise ratios permitted the visualization of the characteristic lamination of some neocortical areas, e.g., Baillarger lines. Relaxation times were determined for different structures: at 7 T, T1 was 2.01/1.84/1.54 s in GM/GM-V1/WM, T2 was 59.1/54.4 ms in GM/WM and T2* was 29 ms. At 4.7 T, T1 was 25% shorter, T2 and T2* 18% longer compared to 7T. Spatiotemporally resolved blood-oxygen-level-dependent (BOLD) signal changes yielded robust activations and deactivations (negative BOLD), with average amplitudes of 4.1% and −2.4%, respectively. Finally, the first high-resolution (500 μm in-plane) images of cerebral blood flow in the anesthetized monkey are presented. On functional activation we observed flow increases of up to 38% (59 to 81 ml/100 g/min) in the primary visual cortex, V1. Compared to BOLD maps, functional CBF maps were found to be localized entirely within the gray matter, providing unequivocal evidence for high spatial specificity. The exquisite sensitivity of the system and the increased specificity of the hemodynamic signals promise further insights into the relationship of the latter to the underlying physiological activity.  相似文献   

18.
Detection of myocardial viability by low-dose dobutamine Cine MR imaging   总被引:15,自引:0,他引:15  
The purpose of this work was to test the diagnostic value of dobutamine stress magnetic resonance imaging (MRI) for predicting recovery of regional myocardial contractility after revascularization. Cardiac wall motion abnormalities are due to either non-viable and/or scarred, or viable, but hibernating, myocardial tissue. Dobutamine stress leads to increased systolic wall thickening only in viable myocardium. Twenty-five patients with akinetic or dyskinetic myocardial regions were examined with a Cine FLASH-2D sequence at rest and during dobutamine stress (10 μg/kg/min). Patients were re-examined at rest 3, and in case of persisting wall motion defects, 6 months after revascularization. Criterion of viability was increasing end-systolic wall thickening during stress and/or at follow-up. Akinetic regions related either to the LAD (n = 19) or to the RCA (n = 6) were judged viable if >=50% of the affected segments improved. MR studies were completed in all subjects without arrhythmia or need for early terminations due to symptoms. Sensitivity, specificity, and positive predictive value for the prediction of myocardial viability were 61%, 90%, and 87% for the segment-related analysis, and 76%, 100%, and 100% for the patient-related analysis based on coronary artery distribution, respectively. Dobutamine stress MRI allows to predict global functional recovery of akinetic myocardial regions after revascularization with a high positive predictive value and high specificity.  相似文献   

19.
Dynamic contrast-enhanced magnetic resonance imaging (MRI) is widely used for measuring perfusion and blood volume, especially cerebral blood volume (CBV). In case of blood-brain barrier (BBB) disruption, the conventional techniques only partially determine the pharmacokinetic parameters of contrast medium (CM) exchange between different compartments. Here a modified pharmacokinetic model is applied, which is based on the bidirectional CM exchange between blood and two interstitial compartments in terms of the fractional volumes of the compartments and the vessel permeabilities between them. The evaluation technique using this model allows one to quantify the fractional volumes of the different compartments (blood, cells, slowly and fast enhancing interstitium) as well as the vessel permeabilities and cerebral blood flow (CBF) with a single T1-weighted dynamic MRI measurement. The method has been successfully applied in 25 glioma patients for generating maps of all of these parameters. The fractional volume maps allow for the differentiation of glioma vascularization types. The maps show a good correlation with the histological grading of these tumors. Furthermore, regions with enhanced interstitial volumes are found in high-grade gliomas. Differences in permeability maps of Gd-DTPA apart from BBB disruption do not exist between different tissue types. CBF measured in high-grade glioma is less pronounced than it would be expected from their blood volume. Therefore pharmacokinetic imaging provides an additional tool for glioma characterization.  相似文献   

20.
Dynamic contrast-enhanced (DCE) T(1)-weighted magnetic resonance imaging (MRI) is a powerful tool capable of providing quantitative assessment of contrast uptake and characterization of microvascular structure in human gliomas. The kinetics of the bolus injection doped with increasing concentrations of gadopentate dimeglumine (Gd-DTPA) depends on tissue as well as pulse sequence parameters. A simple method is described that overcomes the limitation of relative signal increase measurement and may lead to improved accuracy in quantification of perfusion indices of glioma. Based on an analysis of the contrast behavior of spoiled gradient-recalled echo sequence; a parameter K with arbitrary unit 5.0 is introduced, which provides a better approximation to the differential T(1) relaxation rate. DCE-MRI measurements of relative cerebral blood volume (rCBV) and cerebral blood flow (rCBF) were calculated in 25 patients with brain tumors (15=high-grade glioma, 10=low-grade glioma). The mean rCBV was 6.46 +/- 2.45 in high-grade glioma and 2.89 +/- 1.47 in the low-grade glioma. The rCBF was 3.94 +/- 1.47 in high-grade glioma while 2.25 +/- 0.87 in low-grade glioma. A significant difference in rCBF and rCBV was found between high- and low-grade gliomas. This simple and robust technique reveals the complexity of tumor vasculature and heterogeneity that may aid in therapeutic management especially in nonenhancing high-grade gliomas. We conclude that the precontrast medium steady-state residue parameter K may be useful in improved quantification of perfusion indices in human glioma using T(1)-weighted DCE-MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号