首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The kinetics of the CH2CHO + O2 reaction was experimentally studied in two quasi-static reactors and a discharge flow-reactor at temperatures ranging from 298 to 660 K and pressures between 1 mbar and 46 bar with helium as the bath gas. The CH2CHO radicals were produced by the laser-flash photolysis of ethyl vinyl ether at 193 nm and by the reaction F + CH3CHO, respectively. Laser-induced fluorescence excited at 337 or 347.4 nm was used to monitor the CH2CHO concentration. The reaction proceeded via reversible complex formation with subsequent isomerization and fast decomposition: CH2CHO + O2 <= => O2CH2CHO --> HO2CH2CO --> products. The rate coefficients for the first and second steps were determined (k1, k-1, k2) and analyzed by a master equation with specific rate coefficients from the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Molecular and transition-state parameters were obtained from quantum chemical calculations. A third-law analysis led to the following thermodynamic parameters for the first step: Delta(R)S degrees 300K(1) = -144 J K(-1) mol(-1) (1 bar) and Delta(R)H degrees 300K(1) = (-101 +/- 4) kJ mol(-1). From the falloff analysis, the following temperature dependencies for the low- and high-pressure limiting rate coefficients were obtained: k1(0) = 5.14 x 10(-14) exp(210 K/T) cm(-3) s(-1); k1(infinity) = 1.7 x 10(-12) exp(-520 K/T) cm(-3) s(-1); and k2(infinity) = 1.3 x 10(12) exp[-(82 +/- 4) kJ mol(-1)/RT] s(-1). Readily applicable analytical representations for the pressure and temperature dependence of k1 were derived to be used in kinetic modeling.  相似文献   

3.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

4.
The kinetics of the reactions of chlorinated methyl radicals (CH2Cl, CHCl2, and CCl3) with NO2 have been studied in direct measurements at temperatures between 220 and 360 K using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated at 193 or 248 nm by pulsed laser photolysis of appropriate precursors. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of NO2 being in large excess over radical concentrations. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (1-6 Torr) and are found to depend on temperature as follows: k(CH2Cl + NO2) = (2.16 +/- 0.08) x 10(-11) (T/300 K)(-1.12+/-0.24) cm3 molecule(-1) s(-1) (220-363 K), k(CHCl2 + NO2) = (8.90 +/- 0.16) x 10(-12) (T/300 K)(-1.48+/-0.13) cm3 molecule(-1) s(-1) (220-363 K), and k(CCl3 + NO2) = (3.35 +/- 0.10) x 10(-12) (T/300 K)(-2.2+/-0.4) cm3 molecule(-1) s(-1) (298-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the reactions CH2Cl + NO2, CHCl2 + NO2, and CCl3 + NO2, the products observed are formaldehyde, CHClO, and phosgene (CCl2O), respectively. In addition, a weak signal for the HCl formation has been detected for the CHCl2 + NO2 reaction.  相似文献   

5.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

6.
7.
The thermal decomposition of the 2-chloroallyl radical, CH(2)CClCH(2) --> CH(2)CCH(2) + Cl (1), was studied using the laser photolysis/photoionization mass spectrometry technique. Rate constants were determined in time-resolved experiments as a function of temperature (720-840 K) and bath gas density ([He] = (3-12) x 10(16), [N(2)] = 6 x 10(16) molecule cm(-3)). C(3)H(4) was observed as a primary product of reaction 1. The rate constants of reaction 1 are in the falloff, close to the low-pressure limit, under the conditions of the experiments. The potential energy surface (PES) of reaction 1 was studied using a variety of quantum chemical methods. The results of the study indicate that the minimum energy path of the CH(2)CClCH(2) dissociation proceeds through a PES plateau corresponding to a weakly bound Cl-C(3)H(4) complex; a PES saddle point exists between the equilibrium CH(2)CClCH(2) structure and the Cl-C(3)H(4) complex. The results of quantum chemical calculations, the rate constant values obtained in the experimental study, and literature data on the reverse reaction of addition of Cl to allene were used to create a model of reactions 1 and -1. The experimental dependences of the rate constants on temperature and pressure were reproduced in RRKM/master equation calculations. The reaction model provides expressions for the temperature dependences of the high-pressure-limit and the low-pressure-limit rate constants and the falloff broadening factors (at T = 300-1600 K): k(infinity)(1) = 1.45 x 10(20)T(-1.75) exp(-19609 K/T) s(-1), k(infinity)(-)(1) = 8.94 x 10(-10)T(-0.40) exp(481 K/T) cm(3) molecule(-1) s(-1), k(1)(0)(He) = 5.01 x 10(-32)T(-12.02) exp(-22788 K/T) cm(3) molecule(-1) s(-1), k(1)(0)(N(2)) = 2.50 x 10(-32)T(-11.92) exp(-22756 K/T) cm(3) molecule(-1) s(-1), F(cent)(He) = 0.46 exp(-T/1001 K) + 0.54 exp(-T/996 K) + exp(-4008 K/T), and F(cent)(N(2)) = 0.37 exp(-T/2017 K) + 0.63 exp(-T/142 K) + exp(-4812 K/T). The experimental data are not sufficient to specify all the parameters of the model; consequently, some of the model parameters were obtained from quantum chemical calculations and from analogy with other reactions of radical decomposition. Thus, the parametrization is most reliable under conditions close to those used in the experiments.  相似文献   

8.
The rate coefficient has been measured under pseudo-first-order conditions for the Cl+CH3 association reaction at T=202, 250, and 298 K and P=0.3-2.0 Torr helium using the technique of discharge-flow mass spectrometry with low-energy (12-eV) electron-impact ionization and collision-free sampling. Cl and CH3 were generated rapidly and simultaneously by reaction of F with HCl and CH4, respectively. Fluorine atoms were produced by microwave discharge in an approximately 1% mixture of F2 in He. The decay of CH3 was monitored under pseudo-first-order conditions with the Cl-atom concentration in large excess over the CH3 concentration ([Cl]0/[CH3]0=9-67). Small corrections were made for both axial and radial diffusion and minor secondary chemistry. The rate coefficient was found to be in the falloff regime over the range of pressures studied. For example, at T=202 K, the rate coefficient increases from 8.4x10(-12) at P=0.30 Torr He to 1.8x10(-11) at P=2.00 Torr He, both in units of cm3 molecule-1 s-1. A combination of ab initio quantum chemistry, variational transition-state theory, and master-equation simulations was employed in developing a theoretical model for the temperature and pressure dependence of the rate coefficient. Reasonable empirical representations of energy transfer and of the effect of spin-orbit interactions yield a temperature- and pressure-dependent rate coefficient that is in excellent agreement with the present experimental results. The high-pressure limiting rate coefficient from the RRKM calculations is k2=6.0x10(-11) cm3 molecule-1 s-1, independent of temperature in the range from 200 to 300 K.  相似文献   

9.
A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at approximately 0.05 s(-1). Fe(+).H(2)O should therefore be the most abundant single-ligand Fe(+) complex in the mesosphere below 90 km.  相似文献   

10.
The kinetics of the CH2I + NO2, CH2Br + NO2, and CHBrCl + NO2 reactions have been studied at temperatures between 220 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time-resolved measurements to obtain reaction rate coefficients under pseudo-first-order conditions. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (2-6 Torr) and are found to depend on temperature as follows: k(CH2I + NO2) = (2.18 +/- 0.07) x 10(-11) (T / 300 K)(-1.45) (+/- 0.22) cm3 molecule(-1) s(-1) (220-363 K), k(CH2Br + NO2) = (1.76 +/- 0.03) x 10(-11) (T/300 K)(-0.86) (+/- 0.09) cm3 molecule(-1) s(-1) (221-363 K), and k(CHBrCl + NO2) = (8.81 +/- 0.28) x 10(-12) (T/300 K)(-1.55) (+/- 0.34) cm3 molecule(-1) s(-1) (267-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the CH2I + NO2 and CH2Br + NO2 reactions, the observed product is formaldehyde. For the CHBrCl + NO2 reaction, the product observed is CHClO. In addition, I atom and iodonitromethane (CH2INO2) or iodomethyl nitrite (CH2IONO) formations have been detected for the CH2I + NO2 reaction.  相似文献   

11.
The rate constants of the recombination reaction of p-fluorobenzyl radicals, p-F-C6H4CH2 + p-F-C6H4CH2 (+M) --> C14H12F2 (+M), have been measured over the pressure range 0.2-800 bar and the temperature range 255-420 K. Helium, argon, and CO2 were employed as bath gases (M). At pressures below 0.9 bar in Ar and CO2, and 40 bar in He, the rate constant k1 showed no dependence on the pressure and the nature of the bath gas, clearly indicating that it had reached the limiting high-pressure value of the energy-transfer (ET) mechanism (k(1,infinity)ET). A value of k(1,infinity)ET(T) = (4.3 +/- 0.5) x 10(-11) (T/300 K)(-0.2) cm3 molecule(-1) s(-1) was determined. At pressures above about 5 bar, the k1 values in Ar and CO2 were found to gradually increase in a pressure range where according to energy-transfer mechanism, they should remain at the constant value k(1,infinity)ET. The enhancement of the recombination rate constant beyond the value k(1,infinity)ET increased in the order He < Ar < CO2, and it became more pronounced with decreasing temperature. The dependences of k1 on pressure, temperature, and the bath gas were similar to previous observations in the recombination of benzyl radicals. The effect of fluorine-substitution of the benzyl ring on k1 values is discussed. The present results confirm the significant role of radical complexes in the recombination kinetics of benzyl-type radicals in the gas-liquid transition range. The observations on a rate enhancement beyond the experimental value of k(1,infinity)ET at elevated densities up to the onset of diffusion-control are consistently explained by the kinetic contribution of a "radical-complex" mechanism which is solely based on standard van der Waals interaction between radicals and bath gases.  相似文献   

12.
Laser-induced fluorescence spectroscopy via excitation of the A2pi(3/2) <-- X2pi(3/2) (2,0) band at 445 nm was used to monitor IO in the presence of NO2 following its generation in the reactions O(3P) + CF3I and O(3P) + I2. Both photolysis of O3 (248 nm) and NO2 (351 nm) were used to initiate the production of IO. The rate coefficients for the thermolecular reaction IO + NO2 + M --> IONO2 + M were measured in air, N2, and O2 over the range P = 18-760 Torr, covering typical tropospheric conditions, and were found to be in the falloff region. No dependence of k1 upon bath gas identity was observed, and in general, the results are in good agreement with recent determinations. Using a Troe broadening factor of F(B) = 0.4, the falloff parameters k0(1) = (9.5 +/- 1.6) x 10(-31) cm6 molecule(-2) s(-1) and k(infinity)(1) = (1.7 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) were determined at 294 K. The temporal profile of IO at elevated temperatures was used to investigate the thermal stability of the product, IONO2, but no evidence was observed for the regeneration of IO, consistent with recent calculations for the IO-NO2 bond strength being approximately 100 kJ mol(-1). Previous modeling studies of iodine chemistry in the marine boundary layer that utilize values of k1 measured in N2 are hence validated by these results conducted in air. The rate coefficient for the reaction O(3P) + NO2 --> O2 + NO at 294 K and in 100 Torr of air was determined to be k2 = (9.3 +/- 0.9) x 10(-12) cm3 molecule(-1) s(-1), in good agreement with recommended values. All uncertainties are quoted at the 95% confidence limit.  相似文献   

13.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

14.
The kinetics of the CH3 + Cl2 (k2a) and CD3 + Cl2 (k2b) reactions were studied over the temperature range 188-500 K using laser photolysis-photoionization mass spectrometry. The rate constants of these reactions are independent of the bath gas pressure within the experimental range, 0.6-5.1 Torr (He). The rate constants were fitted by the modified Arrhenius expression, k2a = 1.7 x 10(-13)(T/300 K)(2.52)exp(5520 J mol(-1)/RT) and k2b = 2.9 x 10(-13)(T/300 K)(1.84)exp(4770 J mol(-1)/RT) cm(3) molecule(-1) s(-1). The results for reaction 2a are in good agreement with the previous determinations performed at and above ambient temperature. Rate constants of the CH3 + Cl2 and CD3 + Cl2 reactions obtained in this work exhibit minima at about 270-300 K. The rate constants have positive temperature dependences above the minima, and negative below. Deuterium substitution increases the rate constant, in particular at low temperatures, where the effect reaches ca. 45% at 188 K. These observations are quantitatively rationalized in terms of stationary points on a potential energy surface based on QCISD/6-311G(d,p) geometries and frequencies, combined with CCSD(T) energies extrapolated to the complete basis set limit. 1D tunneling as well as the possibility of the negative energies of the transition state are incorporated into a transition state theory analysis, an approach which also accounts for prior experiments on the CH3 + HCl system and its various deuterated isotopic substitutions [Eskola, A. J.; Seetula, J. A.; Timonen, R. S. Chem. Phys. 2006, 331, 26].  相似文献   

15.
The hydrolysis profile of the bifunctional trinuclear phase II clinical agent [(trans-PtCl(NH(3))(2))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2))](4+) (BBR3464, 1) has been examined using [(1)H,(15)N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy. Reported are estimates of the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pK(a1) approximately equal to pK(a2) approximately equal to pK(a3)). The equilibrium constants for the aquation determined by NMR at 298 and 310 K (I = 0.1 M, pH 5.3) are similar, pK(1) = pK(2) = 3.35 +/- 0.04 and 3.42 +/- 0.04, respectively. At lower ionic strength (I = 0.015 M, pH 5.3) the values at 288, 293, and 298 K are pK(1) = pK(2) = 3.63 +/- 0.05. This indicates that the equilibrium is not strongly ionic strength or temperature dependent. The aquation and anation rate constants for the two-step aquation model at 298 K in 0.1 M NaClO(4) (pH 5.3) are k(1) = (7.1 +/- 0.2) x 10(-5) s(-1), k(-1) = 0.158 +/- 0.013 M(-1) s(-1), k(2) = (7.1 +/- 1.5) x 10(-5) s(-1), and k(-2) = 0.16 +/- 0.05 M(-1) s(-1). The rate constants in both directions increase 2-fold with an increase in temperature of 5 K, and rate constants increase with a decrease in solution ionic strength. A pK(a) value of 5.62 plus minus 0.04 was determined for the diaqua species [(trans-Pt(NH(3))(2)(OH(2)))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)-NH(2))(2))](6+) (3). The speciation profile of 1 under physiological conditions is explored and suggests that the dichloro form predominates. The aquation of 1 in 15 mM phosphate was also examined. No slowing of the initial aquation was observed, but reversible reaction between aquated species and phosphate does occur.  相似文献   

16.
We present a direct ab initio and hybrid density functional theory dynamics study of the thermal rate constants of the unimolecular decomposition reaction of C2H5O-->CH2O + CH3 at a high-pressure limit. MPW1K/6-31+G(d,p), MP2/6-31+G(d,p), and MP2(full)/6-31G(d) methods were employed to optimize the geometries of all stationary points and to calculate the minimum energy path (MEP). The energies of all the stationary points were refined at a series of multicoefficient and multilevel methods. Among all methods, the QCISD(T)/aug-cc-pVTZ energies are in good agreement with the available experimental data. The rate constants were evaluated based on the energetics from the QCISD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) level of theory using both microcanonical variational transition state theory (microVT) and RRKM theory with the Eckart tunneling correction in the temperature range of 300-2500 K. The calculated rate constants at the QCISD(T)/aug-cc-pVTZ/MPW1K/6-31+G(d,p) level of theory are in good consistent with experimental data. The fitted three-parameter Arrhenius expression from the microVT/Eckart rate constants in the temperature range 200-2500 K is k = 2.52 x 10(12)T(0.41)e(-8894.0/T) s(-1). The falloff curves of pressure-dependent rate constants are performed using master-equation method within the temperature range of 391-471 K. The calculated results are in good agreement with the available experimental data.  相似文献   

17.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

18.
The CH2Cl + CH3 (1) and CHCl2 + CH3 (2) cross-radical reactions were studied by laser photolysis/photoionization mass spectroscopy. Overall rate constants were obtained in direct real-time experiments in the temperature region 301-800 K and bath gas (helium) density (6-12) x 10(16) atom cm(-3). The observed rate constant of reaction 1 can be represented by an Arrhenius expression k1 = 3.93 x 10(-11) exp(91 K/T) cm3 molecule(-1) s(-1) (+/-25%) or as an average temperature-independent value of k1= (4.8 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1). The rate constant of reaction 2 can be expressed as k2= 1.66 x 10(-11) exp(359 K/T) cm3 molecule(-1) s(-1) (+/-25%). C2H4 and C2H3Cl were detected as the primary products of reactions 1 and 2, respectively. The experimental values of the rate constant are in reasonable agreement with the prediction based on the "geometric mean rule." A separate experimental attempt to determine the rate constants of the high-temperature CH2Cl + O2 (10) and CHCl2 + O2 (11) reaction resulted in an upper limit of 1.2 x 10(-16) cm(3) molecule(-1) s(-1) for k10 and k11 at 800 K.  相似文献   

19.
The kinetics of the reaction OH + C2H2 have been studied using laser flash photolysis at 248 nm to generate OH radicals and laser-induced fluorescence to monitor OH removal. An attempt was made to use the rate coefficients OH (v = 1,2) + C2H2 to determine the limiting high-pressure rate coefficient, k(1a)(infinity), over the temperature range of 195-823 K. This method is usually applicable if the reaction samples the potential energy well of the adduct, HOC2H2, and if intramolecular vibrational relaxation is fast. In the present case, however, the rate coefficients for loss of the vibrationally excited states by reaction with C2H2 also contain a substantial contribution from nonreactive vibrational relaxation, which occurs via a mechanism that does not sample the adduct potential energy well but involves, at least at low temperatures, collisions that access a shallower, longer range van der Waals well. The data were analyzed using a composite mechanism that incorporates both reactive and nonreactive energy transfer mechanisms, which allows the determination of k(1a)(infinity)(T) for OH + C2H2 with satisfactory accuracy over the temperature range 195-823 K. The kinetics of the reaction OH (v = 0) + C2H2 were also studied in He over the range of conditions: 210-373 K and 5-760 Torr. A one-dimensional master equation (ME) analysis of the experimental data provided a further determination of k(1a)(infinity)(T) and also (down) for He. Combining the two sets of results gives a consistent dataset for k(1a)(infinity) and the Arrhenius parameters A1ainfinity = 7.3 x 10(-12) cm(3) molecule(-1) s(-1) and E(1a)(infinity) = 5.3 kJ mol(-1), with (down) = 150(T/300 K) cm(-1). Additional experiments were conducted at room temperature in N(2) and SF(6) by laser flash photolysis with cavity ring down spectroscopy, and ME calculations were then optimized for the pressure falloff in N(2) by varying the average downward energy transfer parameter ((down)). The output from the best fit ME was parametrized using a modified Troe expression to provide rate data for use in atmospheric modeling.  相似文献   

20.
Reactions between Mg(+) and O(3), O(2), N(2), CO(2) and N(2)O were studied using the pulsed laser photo-dissociation at 193 nm of Mg(C(5)H(7)O(2))(2) vapour, followed by time-resolved laser-induced fluorescence of Mg(+) at 279.6 nm (Mg(+)(3(2)P(3/2)-3(2)S(1/2))). The rate coefficient for the reaction Mg(+) + O(3) is at the Langevin capture rate coefficient and independent of temperature, k(190-340 K) = (1.17 ± 0.19) × 10(-9) cm(3) molecule(-1) s(-1) (1σ error). The reaction MgO(+) + O(3) is also fast, k(295 K) = (8.5 ± 1.5) × 10(-10) cm(3) molecule(-1) s(-1), and produces Mg(+) + 2O(2) with a branching ratio of (0.35 ± 0.21), the major channel forming MgO(2)(+) + O(2). Rate data for Mg(+) recombination reactions yielded the following low-pressure limiting rate coefficients: k(Mg(+) + N(2)) = 2.7 × 10(-31) (T/300 K)(-1.88); k(Mg(+) + O(2)) = 4.1 × 10(-31) (T/300 K)(-1.65); k(Mg(+) + CO(2)) = 7.3 × 10(-30) (T/300 K)(-1.59); k(Mg(+) + N(2)O) = 1.9 × 10(-30) (T/300 K)(-2.51) cm(6) molecule(-2) s(-1), with 1σ errors of ±15%. Reactions involving molecular Mg-containing ions were then studied at 295 K by the pulsed laser ablation of a magnesite target in a fast flow tube, with mass spectrometric detection. Rate coefficients for the following ligand-switching reactions were measured: k(Mg(+)·CO(2) + H(2)O → Mg(+)·H(2)O + CO(2)) = (5.1 ± 0.9) × 10(-11); k(MgO(2)(+) + H(2)O → Mg(+)·H(2)O + O(2)) = (1.9 ± 0.6) × 10(-11); k(Mg(+)·N(2) + O(2)→ Mg(+)·O(2) + N(2)) = (3.5 ± 1.5) × 10(-12) cm(3) molecule(-1) s(-1). Low-pressure limiting rate coefficients were obtained for the following recombination reactions in He: k(MgO(2)(+) + O(2)) = 9.0 × 10(-30) (T/300 K)(-3.80); k(Mg(+)·CO(2) + CO(2)) = 2.3 × 10(-29) (T/300 K)(-5.08); k(Mg(+)·H(2)O + H(2)O) = 3.0 × 10(-28) (T/300 K)(-3.96); k(MgO(2)(+) + N(2)) = 4.7 × 10(-30) (T/300 K)(-3.75); k(MgO(2)(+) + CO(2)) = 6.6 × 10(-29) (T/300 K)(-4.18); k(Mg(+)·H(2)O + O(2)) = 1.2 × 10(-27) (T/300 K)(-4.13) cm(6) molecule(-2) s(-1). The implications of these results for magnesium ion chemistry in the atmosphere are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号