首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
Irradiation of 2-phenyl and 2-isobutenyl-1-pyrrolinium salts in solutions of alcohols and ethers containing α-hydrogens leads to production of addition products. In addition, alcohols and ethers having low ionization potentials and α-hydrogens serve as efficient quenchers of fluorescence from 2-phenyl-1-pyrrolinium salts. Deuterium isotope effects on fluorescence quenching rate constants appear to implicate electron transfer mechanisms in photoaddition and quenching pathways.  相似文献   

2.
The E- and Z-silyl enol ethers 4 derived from allyl 3-R-3-dimethyl(phenyl)silylpropanoate (R = Me, Pr(i) and Ph) and the Z-silyl enol ethers 7 derived from 4-R-4-dimethyl(phenyl)silylbut-2-enyl acetate (R = Me and Pr(i)) undergo Ireland-Claisen rearrangements largely in the same stereochemical sense, with C-C bond formation taking place anti to the silyl group in the conformations 22, 23 and 24 in which the hydrogen atom on the stereogenic centre is inside, more or less eclipsing the double bond. The E-silyl enol ether E-7a derived from 4-methyl-4-dimethyl(phenyl)silylbut-2-enyl acetate shows low diastereoselectivity in the alternative sense, probably because C-C bond formation takes place anti to the silyl group in the conformation 26 with the methyl group inside, but the silyl enol ether E-7b derived from 4-isopropyl-4-dimethyl(phenyl)silylbut-2-enyl acetate shows low diastereoselectivity in the normal sense. The E- and Z-silyl enol ethers 33 derived from cis-crotyl 3-phenyl-3-dimethyl(phenyl)silylpropanoate and the E-silyl enol ether 39 derived from trans-crotyl 3-phenyl-3-dimethyl(phenyl)silylpropanoate undergo Ireland-Claisen rearrangements largely in the same stereochemical sense as their allyl counterparts, but with moderately high levels of diastereocontrol in setting up the third stereogenic centre following from chair-like transition structures.  相似文献   

3.
Aldehydes and ketones have been converted efficiently to their corresponding Mannich products by various dimethyl(methylene)ammonium salts under a range of reaction conditions. The several methods used to form these derivatives are compared. Excellent approaches to aldehyde derivatives involve treating the enol silyl ether of the carbonyl compound with methyllithium and then an iminium salt, or directly adding the iminium salt to the enol silyl ether. Ketones may be derivatized effectively by treatment with potassium hydride, followed by an iminium salt, or from the enol silyl ether by addition of the iminium reagent. Use of iminium reagents in the Mannich reaction is recommended because the yields are often good and the site of attachment on an unsymmetrical ketone is both predictable and controllable.  相似文献   

4.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

5.
The use of reversible covalent bonding in a four-component assembly incorporating chiral alcohols was recently reported to give a method for determining the enantiomeric excess of the alcohols via CD spectroscopy. Experiments that probe the mechanism of this assembly, which consists of 2-formylpyridine (2-PA), dipicolylamine (DPA), Zn(ii) and alcohols to yield zinc complexes of tren-like ligands, are presented. The studies focus upon the mechanism of conversion of a hemi-aminal (1) to a hemi-aminal ether (3), thereby incorporating the fourth component. It was found that molecular sieves along with 3 to 4 equivalents of alcohol are required to drive the conversion of 1 to 3. Attempts to isolate an intermediate in this reaction via addition of strong Lewis acids led to the discovery of a five-membered ring pyridinium salt (5), but upon exposure to Zn(ii) and alcohols gave different products to the assembly. This was interpreted to support the intermediacy of an iminium species. Kinetic studies reveal that the conversion of 1 to 3 is zero-order in alcohol in large excesses of alcohol, supporting rate-determining formation of an intermediate prior to reaction with alcohol. Further, the magnitudes of the rate constants for interconversion of 1 and 3 are similar, supporting the notion that there are similar rate-determining steps (rds) for the forward and reverse reactions. Hammett plots show that the rds involves creation of a negative charge (interpreted as the loss of positive charge), supporting the notion that the decomplexation of Zn(ii) from the assemblies to generate apo-forms of 1 and 3 is rate-determining. The individual mechanistic conclusions are combined to create a qualitative reaction coordinate diagram for the interconversion of 1 and 3.  相似文献   

6.
A dramatic enhancement in fluorescence intensity from 1,1'-bi-2-naphthol (BINOL) to dendritic phenyleneethynylenes containing the BINOL core was observed. The strong fluorescence of the dendrimers allows a very small amount of the chiral materials to be used for sensing. The light harvesting antennas of the dendrimer funnel energy to the center BINOL unit, whose hydroxyl groups upon interaction with a quencher molecule lead to fluorescence quenching. This mechanism makes the dendrimers have much more sensitive fluorescence responses than corresponding small molecule sensors. The fluorescence of these dendrimers can be enantioselectively quenched by chiral amino alcohols. It is observed that the fluorescence lifetime of the generation two dendrimer does not change in the presence of various concentrations of 2-amino-3-phenyl-1-propanol. This demonstrates that the fluorescence quenching is entirely due to static quenching. Thus, formation of nonfluorescent ground-state hydrogen-bond complexes between the dendrimers and amino alcohols is proposed to account for the fluorescent quenching. A linear relationship has been established between the Stern-V?lmer constant of the generation two dendrimer and the enantiomeric composition of 2-amino-3-phenyl-1-propanol. Such enantioselective fluorescent sensors may allow a rapid determination of the enantiomeric composition of chiral molecules and are potentially useful in the combinatorial search of asymmetric catalysts and reagents.  相似文献   

7.
The treatment of morphinan 1 with NaH and MsCl provided very stable iminium salt 7 possessing propellane skeleton. One of the synthesized iminium salts 7, isobutyl derivative 7b, was crystallized and its structure was determined by X-ray crystallography. The natural bond orbital analysis suggested that the stability of the iminium should result from the stereoelectronic effect (hyperconjugation) attributed to their own structures.  相似文献   

8.
The primary alcohols 1a-e and ethers 4a-d were effectively reduced to the corresponding hydrocarbons 2 by HSiEt(3) in the presence of catalytic amounts of B(C(6)F(5))(3). To the best of our knowledge, this is the first example of catalytic use of Lewis acid in the reduction of alcohols and ethers with hydrosilanes. The secondary alkyl ethers 4j,k enabled cleavage and/or reduction under similar reaction conditions to produce either the silyl ethers 3m-n or the corresponding alcohol 5a upon subsequent deprotection with TBAF. It was found that the secondary alcohols 1g-i and tertiary alcohol 1j, as well as the tertiary alkyl ether 4l, did not react with HSiEt(3)/(B(C(6)F(5))(3) reducing reagent at all. The following relative reactivity order of substrates was found: primary > secondary > tertiary. A plausible mechanism for this nontraditional Lewis acid catalyzed reaction is proposed.  相似文献   

9.
The carbon-to-silicon switch in formation of bioactive sila-heterocycles with a silicon-stereogenic center has garnered significant interest in drug discovery. However, metal-catalyzed synthesis of such scaffolds is still in its infancy. Herein, a rhodium-catalyzed enantioselective formal [4+1] cyclization of benzyl alcohols and benzaldimines has been realized by enantioselective difunctionalization of a secondary silane reagent, affording chiral-at-silicon cyclic silyl ethers and sila-isoindolines, respectively. Mechanistic studies reveal a dual role of the rhodium-hydride catalyst. The coupling system proceeds via rhodium-catalyzed enantio-determining dehydrogenative OH silylation of the benzyl alcohol or hydrosilylation of the imine to give an enantioenriched silyl ether or silazane intermediate, respectively. The same rhodium catalyst also enables subsequent intramolecular cyclative C−H silylation directed by the pendent Si-H group. Experimental and DFT studies have been conducted to explore the mechanism of the OH bond silylation of benzyl alcohol, where the Si-O reductive elimination from a Rh(III) hydride intermediate has been established as the enantiodetermining step.  相似文献   

10.
Butane-1,4-diol was fluoroalkylated by its photoaddition reactions with hexafluoropropene and perfluoro (propyl vinyl) ether under atmospheric pressure, by which monofluoroalkylated and bis-fluoroalkylated products were obtained. 1,3-Diols were completely unreactive under the conditions. 2,2,2-Trifluoroethanol, tert.butyl alcohol and methyl tert.butyl ether appeared to be inert solvents for the additions while acetonitrile quenched the reactions. The reactivity of perfluoro vinyl ethers was studied (tested) in their photoaddition reactions with alkanols that were less regioselective (up to 7% rel.of regioisomer) in comparison with hexafluoropropene. Surprisingly, photo-supported base-induced nucleophilic monoand bis-addition of butane-1,4-diol onto hexafluoropropene was observed in acetonitrile.  相似文献   

11.
The thermal and photochemical solvolysis of the two stereoisomeric 2-phenyl-1-propenyl(phenyl)iodonium tetrafluoroborates has been investigated in alcoholic solvents of varying nucleophilicity. The product profiles and rates of product formation in the thermal reaction are all compatible with a mechanism involving cleavage of the vinylic C-I bond assisted by the group in the trans position (methyl or phenyl), always leading to rearranged products. Depending on the nucleophilicity of the solvent, the primarily formed cations may or may not further rearrange to more stable isomers. The less reactive Z compound also yields some unrearranged vinyl ether product in the more nucleophilic solvents via an in-plane S(N)2 mechanism. The mechanism of the photolysis involves direct, unassisted cleavage of the vinylic, and aromatic, C-I bond in an S(N)1 mechanism. This produces a primary vinyl cation, which is partially trapped prior to rearrangement in methanol. The unrearranged vinyl ethers are mainly formed with retention of configuration via a lambda3-iodonium/solvent complex in an S(N)i mechanism. Thermal and photochemical solvolyses of iodonium salts are complementary techniques for the generation of different cation intermediates from the same substrate.  相似文献   

12.
The UV irradiation of aromatic alcohols leads to the formation of several products: carbonyl compounds, ethers, α-glycols and tetra-aryl-1,4-dioxanes.The photoformation of α-glycols is qualitatively and quantitatively compared to the photoreduction of the carbonyl compounds. It is noteworthy that the glycols are formed with a stereochemistry very different depending upon whether the substrate is an alcohol or a carbonyl compound.The structure, configuration and conformation of the 1-4-dixoanes obtained are studies as well as their origin.Other aspects of the photochemistry of the alcohols are analyzed using hydroperoxides as model substrates.  相似文献   

13.
The photochemistry of trans-stilbene and four methoxy-substituted stilbene derivatives has been investigated in a variety of solvents. The fluorescence of all five trans isomers was quenched by 2,2,2-trifluoroethanol (TFE). Upon irradiation of the five substrates in TFE, the products derived from photoaddition of the solvent were detected. Nuclear magnetic resonance spectroscopy of the products formed by irradiation in TFE-OD indicated that the proton and nucleophile are attached to two adjacent atoms of the original alkene double bond. Irradiation of the corresponding methoxy-substituted styrenes and trans-1-arylpropenes in TFE produced the analogous solvent adducts. The photoaddition of TFE proceeded with the general order of reactivity: styrenes > trans-1-arylpropenes > trans-stilbenes. Transient carbocation intermediates were observed following laser flash photolysis of the stilbenes in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The results are consistent with a mechanism that involves photoprotonation of the substrates by TFE or HFIP, followed by nucleophilic trapping of short-lived carbocation intermediates. Compared to the other stilbene derivatives, trans-3,5-dimethoxystilbene displayed a large quantum yield of fluorescence and a low quantum yield of trans-cis isomerization in polar organic solvents. The unique photophysical properties of trans-3,5-dimethoxystilbene are attributed to formation of a highly polarized charge-transfer excited state (mu(e) = 13.2 D).  相似文献   

14.
The reaction between alcohols and Boc2O leads to the formation of tert-butyl ethers and/or Boc-alcohols, depending on the nature of the Lewis acid catalyst. Product distribution is mainly tuned by the anionic part of the salt. Perchlorates and triflates, anions with highly delocalized negative charge, give prevalent or exclusive ether formation. On the other hand, Boc alcohols are the main or exclusive products with un-delocalized isopropoxide or low-delocalized acetate ions. The metal ion influences only the reaction rate, roughly following standard parameters for calculating Lewis acidity. A reaction mechanism is supposed, and a series of experimental evidences is reported to support it. These studies allowed us to conclude that, to synthesize tert-butyl ethers, in reactions involving aliphatic alcohols, Mg(ClO4)2 or Al(ClO4)3 represents the best compromise between costs and efficiency of the reaction, while, in reactions involving phenols, Sc(OTf)3 is the best choice, since aromatic tert-butyl ethers are not stable in the presence of perchlorates.  相似文献   

15.
An easy and efficient zirconium-mediated synthesis of allylamines from simple amines and enol ethers is described. This strategy also allows the synthesis of amino alcohol derivatives containing a Z double bond in their structure when 2,3-dihydrofuran is used. Simple conventional modification of these amino alcohols leads to 2-substituted piperidine derivatives. By applying this approach, a formal total synthesis of the alkaloid coniine is easily achieved from a protected butylamine. Finally, the zirconium-mediated reaction of amines and allyl phenyl ether furnishes homoallylamines or amino ethers depending on the structure of the starting amine.  相似文献   

16.
tert-Butyl vinyl ether (1) reacts with p-TolSCl to give 2-tert-butoxy-2-chloroethyl p-tolyl sulfide (2). In the presence of SnCl4, 2 reacts with silyl enol ethers, allyltrimethylsilane, and vinyl ethers to form a C-C bond. In the case of vinyl ethers, the reaction proceeds through the formation of the 5-membered sulfonium salt intermediate which in turn can react with H2O, TMSCN, allyltrimethylsilane, and Grignard reagents.  相似文献   

17.
Kubo K  Sakaguchi S  Sakurai T 《Talanta》1999,49(4):735-744
Armed crown ethers (1-4) bonding through an amine, amide, ether, or ester linkage to naphthyl group were found to display unique photophysical properties in the presence of guest salts. Complexation of PET fluoroionophores (1a and 1b) with Zn(2+) increased the fluorescence intensities of the host by a factor of 2.4 and 2.7, respectively. (1)H and (13)C NMR analyses of this complexation behavior of 1a revealed that Zn(2+) strongly coordinates with the armed crown nitrogen to cause a dramatic decrease in an intramolecular charge-transfer character. The armed crowns (2 and 3), bonding through an ether or ester linkage to a naphthalene, gave fluorescence quenching with guest thiocyanates. While the amide derivative (4) exhibited high Ba(2+) fluorescence selectivity and in the presence of this cation the host fluorescence intensity was by a factor of 3.69.  相似文献   

18.
The reactions of α,β‐unsaturated aldehydes with cyclopentadiene in the presence of diarylprolinol silyl ethers as catalyst proceed via iminium cations as intermediates, and can be divided into two types; one involving a Michael‐type reaction (type A) and one involving a cycloaddition (type B). Diphenylprolinol silyl ethers and trifluoromethyl‐substituted diarylprolinol silyl ethers, which are widely used proline‐type organocatalysts, have been investigated in this study. As the LUMO of the iminium ion derived from trifluoromethyl‐substituted diarylprolinol silyl ether is lower in energy than that derived from diphenylprolinol silyl ether, as supported by ab initio calculations, the trifluoromethyl‐substituted catalyst is more reactive in a type B reaction. The iminium ion from an α,β‐unsaturated aldehyde is generated more quickly with diphenylprolinol silyl ether than with the trifluoromethyl‐substituted diarylprolinol silyl ether. When the generation of the iminium ion is the rate‐determining step, the diphenylprolinol silyl ether catalyst is the more reactive. Because acid accelerates the generation of iminium ions and reduces the generation of anionic nucleophiles in the Michael‐type reaction (type A), it is necessary to select the appropriate acid for specific reactions. In general, diphenylprolinol silyl ether is a superior catalyst for type A reactions, whereas the trifluoromethyl‐substituted diarylprolinol silyl ether catalyst is preferred for type B reactions.  相似文献   

19.
The reactions of the electrophilic iminium ester mesylate salt 1 with alcohols, phenols, and thiols have been investigated. In the presence of base, thiols, phenols, and thiophenol react with 1 to give the corresponding ether linked HOPO derivatives in good yields. However, the ring opening of salt 1 with alcohols could only be accomplished efficiently using a large excess of the alcohol in the presence of methanesulfonic acid at 80 °C. The synthetic utility of HOPO precursor, 1, has been demonstrated by the synthesis of two polyHOPO chelators 7 and 9.  相似文献   

20.
tert-Butyldimethylsilyl (TBDMS) ethers of primary, secondary, and tertiary alcohols and phenolic TBDMS ethers are desilylated to their corresponding alcohols and phenols, respectively, in DMSO, at 80 degrees C, in 68-94% yield in the presence of 0.2-0.4 equiv of P(MeNCH2CH2)3N. Using P(i-PrNCH2-CH2)3N as the catalyst, 85-97% yields of desilylated alcohols were obtained from TBDMS ethers of 1-octanol, 2-phenoxyethanol, and racemic alpha-phenyl ethanol. These are the first examples of desilylations of silyl ethers catalyzed by nonionic bases. Both catalysts were much less effective for the desilylation of tert-butyldiphenylsilyl (TBDPS) ethers (22-45% yield) under the same conditions as used for TBDMS ethers. Possible pathways involving nucleophilic attack of the anion of the solvent molecule (generated by the catalyst) at the Si-O bond of silyl ether or a prior activation of the silyl ether by the catalyst via a P-Si interaction followed by nucleophilic attack of the solvent anion are proposed on the basis of 1H and 31P NMR experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号