首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The results of a nanosecond laser flash photolysis investigation of the UVA sunscreen Mexoryl* SX in various solvent environments and within a commercial sunscreen formulation are reported. To the best of our knowledge this is the first laser flash photolysis study of a commercial suncare formulation. In each of these environments kinetic UV-visible absorption measurements following nanosecond 355 nm laser excitation reveals a short-lived species with a solvent-dependent absorption maximum around 470–500 nm and a solvent-dependent lifetime of 50–120 ns. This transient absorption is attributed to the triplet state of Mexoryl* SX on the basis that it is quenched by molecular oxygen leading to the formation of singlet oxygen in acetonitrile. The singlet oxygen quantum yield (φΔ), determined by comparative time-resolved near-infrared luminescence measurements and extrapolated to the limit of complete triplet state quenching, is estimated as 0.09 ± 0.03 in acetonitrile. In aqueous solution the shorter triplet state lifetime combined with lower ambient oxygen concentrations precludes significant triplet state quenching. For the commercial sunscreen formulation there was no observable difference in the measured triplet lifetime between samples exposed to oxygen or argon, suggesting that the singlet oxygen quantum yield in such environments is likely to be orders of magnitude lower than that measured in acetonitrile.  相似文献   

2.
喹喔啉衍生物与缺电子烯烃的激光闪光光解研究   总被引:1,自引:0,他引:1  
潘洋  盛振宇  李江  戴静华  储高升  俞书勤 《化学学报》2004,62(14):1293-1298,J002
利用时间分辨激光诱导瞬态吸收光谱装置,以一台Nd:YAG激光器四倍频后的266nm激光作为激发光源,详细研究了两种喹喔啉衍生物激发三重态在乙腈体系中的动力学过程,得到激光脉冲作用后不同时间的瞬态吸收光谱及激发三重态自猝灭反应动力学常数.并以五种缺电子烯烃作为猝灭剂,得到了基态缺电子烯烃对喹喔啉衍生物激发三重态的猝灭反应动力学常数,阐明了猝灭反应机理.  相似文献   

3.
The photochemistry of three novel t-butylperester derivatives of fluorenone was examined and compared with unsubstituted fluorenone and a mono-t-butylperester of benzophenone using both conventional microsecond and nanosecond laser flash photolysis. On conventional microsecond flash photolysis in 2-propanol, all four fluorenone compounds gave transient absorption in the region 300–400 nm due to a ketyl radical formed from the abstraction of a hydrogen atom from the solvent by the upper excited triplet n—π* state of the fluorenone chromophore. This assignment was confirmed by a pH-dependent study on the transient absorption spectra. The nitro-t-butylperester derivative of fluorenone gave additional absorption above 400 nm due to species associated with the nitro group. No evidence for benzoyloxy radical formation could be found in non-hydrogen-atom-donating solvents with microsecond flash photolysis which is associated with homolysis of the perester groups. On nanosecond laser flash photolysis of the fluorenone compounds at 355 nm excitation in acetonitrile and hexa-fluorobenzene, transient absorptions were observed in the region 320–640 nm due to the corresponding triplet states. All the t-butylperester derivatives showed residual absorbances at longer time delays which were tentatively assigned to the corresponding benzoyloxy radicals produced by homolysis of the perester groups. In contrast, the mono-t-butylperester of benzophenone, included for comparison only, showed very weak transient absorption in the region 320–640 nm compared with that of the strong triplet of benzophenone under the same excitation conditions. The triplet absorptions and lifetimes of the fluorenone compounds were correlated with their photopolymerization activities in bulk methylmethacrylate monomer. In oxygenated solutions, the triplet absorptions of fluorenone and benzophenone were effectively quenched; however, long-lived transient growths were observed for all the t-butylperester derivatives. The intensities of these novel transient absorptions appear to correlate with the total number of t-butylperester groups in the fluorenone molecule and tentative assignments are discussed.  相似文献   

4.
Generation of triplet eximers of 6-fluoro-7-piperazinyl-quinolone-3-carboxylic acids (FQs) have been detected in aqueous media using laser flash photolysis (LFP). These transient species (SS) are generated by self-quenching reactions of FQ triplet excited states such as pefloxacin (PFX), norfloxacin (NFX), the N-acetylated form of NFX (ANFX), and its methyl ester (EANFX) with their ground states. In this context, self-quenching rate constants in the range of (1-7) × 10(8) M(-1) s(-1) were determined. The triplet excimers show transient absorption spectra with λ(max) ca. 710 nm for SS(NFX), 740 nm for SS(PFX), and 620 nm for SS(ANFX) and E(ANFX), which are red-shifted with respect to their predecessors triplet excited states. These excimers can be also observed in the presence of phosphate buffer (PB). Experiments performed with NFX and ANFX at different PB concentrations showed that deprotonation processes are not involved in the generation of SS. The triplet multiplicity of the FQ excimers was confirmed by energy transfer reactions with naproxen. The correlation between fluorescence, intersystem crossing, excimer and photodegradation quantum yields of (A)NFX indicated that FQ self-quenching reactions are mainly a deactivation pathway. On the other hand, generation of FQ radical anions absorbing at λ(max) ca. 620 nm has been observed by an efficient electron transfer reaction from Trp to NFX, PFX, and ANFX (rate constants ca. 1 × 10(9) M(-1) s(-1)).  相似文献   

5.
The photochromic process of 3-phenyl-3-[1,2-dimethylindol-3-yl]-3H-naphtho[2,1-b]pyran [I] has been examined with nanosecond laser flash photolysis techniques in cyclohexane and acetonitrile respectively. Both excited singlet state and triplet state are involved in the photocoloration process. The decay kinetics of photoproducts are also studied. The maximum absorption wavelength and lifetime of the transient species are solvent dependent.  相似文献   

6.
The triplet state of pyrromethene 567, a molecule with potential as a solid state laser dye, has been characterized in benzene by pulse radiolysis in terms of its absorption spectrum, lifetime, self-quenching, electronic excitation energy, triplet–triplet extinction coefficient and oxygen quenching rate constant. The use of laser flash photolysis has then allowed determination of the triplet quantum yield, efficiency of formation of singlet oxygen (1Δg), and the rate constant for reaction of the latter species with the ground state. The affects of oxygen on the fluorescence and triplet yields demonstrate that oxygen-induced intersystem crossing is important, the sum of these parameters being unity within experimental error. The mechanism of reaction of P-567 with 1Δg in benzene is predominantly physical in character with only a small (6%) contribution from chemical reaction.  相似文献   

7.
Abstract— The triplet-triplet absorption spectrum of the 4'5' psoralen-thymine mono-adduct has been determined in water and methanol using the technique of laser flash photolysis. The extinction coefficient of the triplet was measured by the energy-transfer method with retinol triplet as standard, and used to determine the singlet → triplet intersystem crossing quantum yield for 353 nm excitation. Reaction rate constants for mono-adduct triplet with thymine and tryptophan were measured in water. Long-lived transient absorptions detected after quenching the mono-adduct triplet with thymine and tryptophan are assigned mainly to the corresponding mono-adduct radical anion, whose spectrum was established in separate pulse radiolysis studies of the mono-adduct in aqueous formate.
The significant singlet → triplet quantum yields found for the mono-adduct might be consistent with the involvement of triplet excited mono-adduct in DNA cross-link formation, as also may be the high reactivity obtained for the triplet with thymine. The initial quenching products observed resulted from a charge-transfer reaction.  相似文献   

8.
The photochemistry of α-terthienyl (αT) and its mono- and dodo derivatives has been examined using nanosecond laser Hash photolysis techniques. The triplet states of these intermediates have been characterized, and show strong triplet-triplet absorptions with maxima in the 450 to 490 nm region. The triplet lifetimes are normally reduced by efficient triplet-triplet annihilation and self-quenching both of which approach diffusion control. Triplet lifetimes in methanol obtained by extrapolation to zero laser dose and zero concentration are 30, 12.5 and 9.4 μs for αT and its mono- and dodo derivatives, respectively; the effect of iodo substitution on the lifetimes is attributed to heavy atom effects. The triplet states are efficiently quenched by oxygen and the electron acceptor methyl viologen, while amines tire very poor triplet quenchers. The iodo derivatives are photolabile. undergoing C-I bond cleavage from the singlet state, a process that was studied in benzene solvent, where the complex between iodine atoms and benzene can be readily characterized. Modification of αT by replacement of the central thiophene ring by an aromatic ring (i.e. DTB) causes drastic changes in the triplet and singlet state kinetic and spectroscopic characteristics.  相似文献   

9.
The quenching of the excited singlet and triplet states of phenosafranine by aromatic amines, methoxybenzenes and triethanolamine was investigated in acetonitrile and methanol. The rate constants for the aromatic quenchers present a typical dependence of an electron transfer process with the one-electron redox potential of the donor. A Rehm–Weller correlation is obtained with the driving force. The fitting parameters are very similar in both solvents. The electron transfer nature of the quenching reaction is further confirmed by the detection of the radical cations of the quenchers and the semireduced form of the dye in laser flash photolysis experiments. The absorption coefficients of the transient species were estimated, and the quantum yield of the charge separation process was determined.  相似文献   

10.
Abstract— The excited states of bilirubin (BR) in a variety of environments have been studied by 347 nm laser flash photolysis. Quantum yields of formation of triplet BR have been shown to be less than 0.005 in solution in water ( p H 9–11), methanolic ammonia, 10% aqueous mulgofen and in cetyl trimethyl-ammonium bromide. In benzene the quantum yield was 0.01 although this diminished to less than 0.005 on addition of triethylamine. Permanent products are formed with benzene and with 1% methanolic ammonia. With BR in HSA a transient decaying with k = 3.5 × 105 s-1 is formed by a monophotonic process together with a permanent product. Neither species is affected by oxygen or by iodide ion. Both originate from BR molecules in the strongest binding site in the HSA. The yields of both species are unaffected by salt but are temperature dependent. The decay of the transient is strongly temperature dependent corresponding to an activation energy of about 50–60 kj mol-1. If this transient is a triplet it is formed with a quantum yield of 0.13 ± 0.01. The relevance of these results to an understanding of the photo therapeutic process is discussed.  相似文献   

11.
Abstract— The reactivity of flavin mononucleotide and of lumiflavin triplets was studied by flash and laser photolysis. The rate constants of the triplets with oxygen, with flavin ground-state molecules, and with Br- ions were determined. Although in solution at room temperature, the protonated flavin triplet, 3F1H+, is not formed directly from its very short lived singlet state, a transient, which we think is this triplet, results from protonation of the neutral triplet. This conclusion is based on a comparison between the neutral and the protonated triplet spectra in a low-temperature glass. It is proposed that the protonated triplet can also be formed by sensitization via the phenanthrene triplet.  相似文献   

12.
The 355 nm laser flash photolysis of argon-saturated pH 8 phosphate buffer solutions of the fluoroquinolone antibiotic flumequine produces a transient triplet state with a maximum absorbance at 575 nm where the molar absorptivity is 14,000 M(-1) cm(-1). The quantum yield of triplet formation is 0.9. The transient triplet state is quenched by various Type-1 photodynamic substrates such as tryptophan (TrpH), tyrosine, N-acetylcysteine and 2-deoxyguanosine leading to the formation of the semireduced flumequine species. This semireduced form has been readily identified by pulse radiolysis of argon-saturated pH 8 buffered aqueous solutions by reaction of the hydrated electrons and the CO2*- radicals with flumequine. The absorption maximum of the transient semireduced species is found at 570 nm with a molar absorptivity of 2,500 M(-1) cm(-1). In argon-saturated buffered solutions, the semireduced flumequine species formed by the reaction of the flumequine triplet with TrpH stoichiometrically reduces ferricytochrome C (Cyt Fe3+) under steady state irradiation with ultraviolet-A light. In the presence of oxygen, O2*- is formed but the photoreduction of Cyt Fe3+ by O2*- competes with an oxidizing pathway which involves photo-oxidation products of TrpH.  相似文献   

13.
The transient intermediates involved in the photochemistry of naphazoline (NP, 2-[1-naphthylme-thyl]imidazoline) have been examined using laser flash photolysis techniques. The photoreactivity of the drug is characterized by a photoionization process occurring through a mixture of mono- and biphotonic pathways. An intramolecular electron transfer involving both the imidazoline and the naphthalene moieties leads to the formation of nitrogen-centered radicals. The generation of singlet oxygen from the lowest excited triplet state of NP is also observed. The results obtained demonstrate the potential for NP to act as a both a type I and type II photosensitizer.  相似文献   

14.
A series of water-soluble 1,4,5,8-naphthalene diimide derivatives has been prepared and their redox and photophysical properties characterized. From laser flash photolysis studies, the triplet excited state of N,N'-bis[2-(N-pyridinium)ethyl]-1,4,5,8-naphthalene diimide (NDI-pyr) was found to undergo oxidative quenching with the electron donors DABCO, tyrosine, and tryptophan as expected from thermodynamics. Interestingly, the reactivities of naphthalene diimides (NDI) possessing alpha- and beta-carboxylic acid substituents (R = -CH2COO-, -C(CH3)2COO-, and -CH2CH2COO-) were strikingly different. In these compounds, the transient produced upon 355 nm excitation did not react with the electron donors. Instead, this transient reacted rapidly (k > 10(8)-10(9) M-1 s-1) with known electron acceptors, benzyl viologen and ferricyanide. The transient spectrum of the carboxyalkyl-substituted naphthalimides observed immediately after the laser pulse was nearly identical to the one-electron-reduced form of 1,4,5,8-naphthalene diimide (produced independently using the bis-pyridinium-substituted naphthaldiimide). From our studies, we conclude that the transient produced upon nanosecond laser flash photolysis of NDI-(CH2)nCOO- is the species produced upon intramolecular electron transfer from the carboxylate moiety to the singlet excited state of NDI. In separate experiments, we verified that the singlet excited state of NDI-pyr does, indeed, react intermolecularly with acetate, alanine, and glycine. The process is further substantiated using thermodynamic driving force calculations. The results offer new prospects of the efficient photochemical production of reactive carbon-centered radicals.  相似文献   

15.
Phenyl azide, 2,6-diethylphenyl azide, 2,6-diisopropylphenyl azide, and 2,4,6-tri-tert-butylphenyl azide were studied by laser flash photolysis (LFP) methods. LFP (266 nm) of the azides in glassy 3-methylpentane at 77 K produces the transient UV-vis absorption spectra of the corresponding singlet nitrenes. At 77 K, the singlet nitrenes relax to the corresponding triplet nitrenes. The triplet nitrenes are persistent at 77 K and their spectra were recorded. The rate constants of singlet to triplet intersystem crossing were determined at this temperature. LFP of 2,4,6-tri-tert-butyl phenyl azide in pentane at ambient temperature again produces a singlet nitrene, which is too short-lived to detect by nanosecond spectroscopy under these conditions. Unlike the other azides, the first detectable intermediate produced upon LFP of 2,4,6-tri-tert-butyl phenyl azide at ambient temperature is the benzazirine (285 nm) which has a lifetime of 62 ns controlled by ring opening to a didehydroazepine. The results are interpreted with the aid of Density Functional Theoretical and Molecular Orbital Calculations.  相似文献   

16.
《European Polymer Journal》1986,22(9):691-697
The spectroscopic properties of 9 oil soluble hydroxy and methoxy thioxanthone derivatives have been examined in various solvents and the data compared to their photopolymerization efficiency and flash photolysis behaviour in solution. Absorption maxima, extinction coefficients, fluorescence and phosphorescence spectra and quantum yields have been measured. Generally, most of the compounds exhibit low fluorescence and high phosphorescence quantum yields except 1-substituted derivatives where intra-molecular hydrogen bonding is involved. These observations are consistent with the high photoreactivity of the molecules occurring via the lowest excited triplet state. Photopolymerization rates of n-butyl methacrylate, using N-diethylmethylamine as co-initiator, correlate to some extent with the absorption maxima and extinction coefficients of the thioxanthones. Transient formation on micro-second flash photolysis is associated with the ketyl radical formed by the lowest excited triplet state of the thioxanthones abstracting a hydrogen atom from the solvent. In the presence of a tertiary amine, a new longer wavelength transient absorption is produced and is assigned to a radical-anion formed by the lowest excited triplet state of the thioxanthones abstracting an electron from the amine. A correlation was observed between the transient absorption due to the radical-anion and the ionisation potential of various amines. Flash photolysis studies in acid and base media confirmed the identity of the radical and radical-ion species. Intra-molecular hydrogen bonding in the α-position to the carbonyl group deactivates both the lowest excited singlet and triplet states of thioxanthone but has little effect on polymerization efficiency. The latter is associated with competition of the carbonyl group with the amine co-initiator for hydrogen bonding and consequent electron abstraction to give an active radical-anion. This is confirmed using micro-second flash photolysis.  相似文献   

17.
Abstract— The photochemical and photosensitizing properties of N -formylkynurenine (FK) and related compounds have been investigated using the laser flash photolysis technique by exciting water solutions with 265 nm or 353 nm radiation. The FK molecules in their first excited singlet state readily react with water leading probably to OH formation. FK triplet state reacts with many biological compounds including vitamins, amino acids and nucleic acid bases. The semi-reduced FK thus formed can, in turn, reduce substrates such as cytochrome c or O2.  相似文献   

18.
Abstract— Little is directly known about the influence of the local environment experienced by a photosensitizer in a biological system on its photophysics and photochemistry. In this paper, we have addressed this issue by correlating mechanistic studies using laser flash photolysis with cellular phototoxicity data, obtained under the same experimental conditions. In particular, we have focused on the interaction between local concentrations of photosensitizer (deuteroporphyrin) and oxygen in determining the mechanism of phototoxicity in L1210 cells. In cells, as well as in models such as liposomes and red blood cell ghosts, hypochromicity and a reduction in fluorescence and intersystem crossing yields are observed on increasing the photosensitizer concentration between 0.5 and 20 μM, which illustrates the onset of a self-association. In aerated cellular preparations, the phototoxicity is predominantly type II (singlet oxygen) for all concentrations studied but an oxygen-independent mechanism occurs at the higher concentrations in deaerated samples. These observations are readily explained by consideration of triplet state kinetics as a function of oxygen and photosensitizer concentrations in cells. The rate constant for quenching of the photosensitizer triplet state by oxygen in cells was measured as 6.6 × 108 M?1 s?1 and by photosensitizer ground state as -106M?1s?1 (in terms of local concentration). The latter reaction gave rise to a long-lived species that is presumably responsible for the oxygen-independent phototoxicity observed at the higher photosensitizer concentrations used. This self-quenching of the triplet state is postulated to arise from electron transfer resulting in radical ion formation. Under conditions where no self-quenching contributes, the phototoxicity measured as a function of oxygen concentration correlates well with a model based on the determined kinetic parameters, thus, unambiguously proving the intermediacy of singlet oxygen. These effects should be borne in mind when interpreting phototoxicity mechanisms from in vitro cell studies. The excellent correlation achieved between laser flash photolysis data and measured phototoxicity gives credence to the direct use of photophysical techniques to elucidate photochemical mechanisms in biological media.  相似文献   

19.
Abstract— The physical and chemical properties of the triplet state of eight ortho-substituted anilides including N -formylkynurenine (FK), the major trp UV-photooxidation product and a remarkable photodynamic agent, have been investigated using both pulse radiolysis and 265 nm laser flash photolysis techniques. The molar extinction coefficient, the intersystem-crossing quantum yield and the oscillator strength of the T 1→ T n absorption band (Λmax˜ 450 nm) have been determined. It is shown that anilides having n,π* triplets readily react with most solvents whereas those having π ,π* triplets slowly react with alcohols. In both cases, the semi-reduced species are formed. In water, the formation of the semi-reduced. species most probably involves the first excited singlet state. The triplet state properties of the FK derivatives (i.e. ortho-substituted anilides having a side chain bearing charged groups such as carboxylic or amino groups) are strongly modified by the ionization state of the charged side chain. In the case of the FK derivatives possessing an uncharged amino group, quenching of the triplet state occurs via a fast reversible electron transfer reaction from the NH2 to the triplet anilide.  相似文献   

20.
Abstract— The coenzyme ubiquinone, an isoprenoid benzoquinone present in the electron-transport chain of mitochondria, has been studied using nanosecond laser flash photolysis and pulse radiolysis. The hitherto undetected triplet excited state of the coenzyme has been identified and some of the physico-chemical properties determined. These measurements may assist the understanding in molecular terms of the degradative action of light upon biological materials, photophosphorylation and the possible initiation of biological electron transport via quinone light absorption. Laser photolysis of ubiquinone in cyclohexane and pulse radiolysis of ubiquinone in benzene results in the formation of a transient absorption with maximum around 440 nm and a half-life of 650 nsec in cyclohexane and 450 nsec in benzene. Energy transfer sensitisation of the β-carotene triplet absorption by ubiquinone in cyclohexane at a rate consistent with the life-time of the 440 nm transient absorption, yields strong evidence that this transient species is triplet ubiquinone. The triplet reacts with oxygen with a rate constant of 2 × 10--9 mole-1 sec-1. Photolysis studies of ubiquinone in ethanol and isopropanol and addition of ethanol to ubiquinone in cyclohexane show that little ubisemiquinone is formed by reaction of the triplet with alcohols. Electron spin resonance studies support this conclusion, and also show that some ubisemiquinone is however formed on photolysis of solutions of ubiquinone in methylcyclohexane. Energy transfer experiments in the presence of various triplet energy donors and acceptors suggest that the triplet energy of ubiquinone lies between 176 and 123 W mole-1, and that the triplet extinction coefficient at 440 nrn is 19 ,000 mole-1 cm-1 in cyclohexane and 13 ,000 mole-1 cm-1 in benzene (at 430 nm). The singlet to triplet crossover efficiency for ubiquinone in cyclohexane was estimated to be 0.04. The low triplet energy level, crossover efficiency and abnormal type of reaction with alcohols are reflections of the profound influence of the isoprenoid chain upon excited states of this quinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号