首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of H2Os3(CO)10, 3, with the monophosphite-substituted and non-substituted tungsten propargyl and allenyl carbonyl complexes Cp(CO)2LWCH2C≡CH (1a, L = CO; 1b, L = P(OMe)3) and Cp(CO)2LWCH = C = CH2 (2a, L = CO; 2b, L = P(OMe)3) were investigated. In the reaction of 1b with 3, a tetranuclear complex 4b is obtained. The molecules of 4b crystallize as Cp(CO)2[P(OMe)3]W(μ, η1, η2-CH2CH=CH)(μ-H)Os3(CO)l0 in space group PI with a = 9.490 (4), b = 13.072 (7), c = 13.770 (9) Å, α = 91.89 (5), β = 106.71 (5), γ = 104.07(4)°, V = 1577(2) Å3, Z = 2. In the reaction of 2a with 3, from the reaction mixture exposed to air followed by workup using silica-gel packed column chromatography, a complex consisting of two triosmium clusters bridged by a hexadiene ligand from the coupling of allenyl ligand was obtained. The molecules of the hexanuclear complex crystallize as [CH2CH = CH)2(μH)2OS6(CO)20in space group P21/c with a = 14.448 (7), b = 13.689 (4), c = 19.224 (4) Å, β = 107.14(3)°, V = 3633 (2) Å Z = 4.  相似文献   

2.
The (μ-H)Os3{μ-OCN(Me)CH2CH=CH2}(CO)10 complex containing an allylic fragment in theN,N-dialkylsubstituted carbamoyl briding ligand was synthesized. The stereo-chemical behavior of this complex in solution was investigated. As follows from the NMR spectral data, the complex undergoes reversible conformational (about the amide C−N bond) and irreversible allylic isomerization. Both conformers were isolated in the solid state by chromatography at a reduced temperature. The allylic isomerization occurs stereospecifically to produce the (μ-H)Os3{μ-OCN(Me)CH=CHMe}(CO)10 complex with thetrans-oriented olefinic hydrogen atoms. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 158–162, January, 1998.  相似文献   

3.
Reaction of (acetonitrile)-undeca(carbonyl)-tri-osmium and tris(2,4-di-tert-butylphenyl) phosphite yielded the phosphite clusters [Os3(CO)11L] (4) and [Os3(CO)10L2] (5) [L = P(O-2,4- t Bu2C6H3)3]. These compounds were characterized spectroscopically and the molecular structure of 5 was determined by single crystal X-ray diffraction, the first reported structural analysis of a tri-osmium cluster containing aromatic phosphite ligands. Compound 5 crystallized in the triclinic space group P 1, and revealed an equatorial trans–trans position of the bulky phosphite ligands.  相似文献   

4.
5.
The reaction of [Os3(CO)10(NCMe)2] (1) with aldehydes in refluxing cyclohexane affords the metal clusters [Os3(CO)10(μ-H)(COR)] (2, R = Me, Ph, CH2Ph or C6H13) in ca. 50% yield. The compound 2 (R = CH2Ph) undergoes hydrogenation under pressure to give the corresponding alcohol, while decarbonylation occurs in the presence of Me3NO to give the Me3N-substituted derivative [Os3(CO)9(NMe3)(μ-H)(COCH2Ph)] in 90% yield.  相似文献   

6.
Treatment of H2Os3(CO)10 with excess ethylene forms ethane and a hydridovinyl cluster complex HOs3(CO)10(CHCH2), which rearranges in refluxing octane to the vinylidene complex H2Os3(CO)9(CCH2).  相似文献   

7.
Heterometallic atoms can be incorporated into the Mo 3 IV trinuclear ion [Mo3S4(H2O)9]4+ to give cuboidal complexes of the kind Mo3MS4, or related edge-linked species {Mo3MS4}2, or corner-shared Mo3S4MS4Mo3 double cubes, depending on the heteroatom used. All of the products formed can be obtained as aqua ions. With four recent additions there are now 15 different heterometal atoms participating in this chemistry from Cr in Group 6 to Bi in Group 15. Preparative procedures, X-ray crystal structures, and distinctive properties including UV-Vis spectra, elution characteristics using Dowexcation exchange chromatography, ICP metal analyses, and the stoichiometries of reactions in which the heterometallic product is oxidized back to [Mo3S4(H2O)9]4+ (with release of the heterometal in an ionic form) are considered.Dedicated to Professor Jiaxi Lu on the occasion of his 80th birthday.  相似文献   

8.
9.
The triosmium cluster 1,2-Os3(CO)10(MeCN)2 reacts rapidly with the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at room temperature to give bmi-bridged cluster 1,2-Os3(CO)10(bmi) (2b) as the major product, along with the chelating isomer 1,1-Os3(CO)10(bmi) (2c) and the hydride-bridged cluster HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) as minor by-products. All three cluster compounds have been isolated and fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and X-ray crystallography in the case of 2c. Cluster 2b is unstable and readily isomerizes to 2c in quantitative yield on mild heating. The kinetics for the conversion of 2b → 2c have been measured over the temperature range of 318-348 K in toluene solution, and based on the observed activation parameters a nondissociative isomerization process that proceeds via a transient μ2-bridged phosphine moiety is presented. Near-UV photolysis of cluster 2c at room temperature affords HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) with a quantum yield of 0.017. The reactivity of clusters 2b, 2c, and 3 is discussed with respect to related diphosphine-substituted Os3(CO)10(P-P) clusters prepared by our groups.  相似文献   

10.
11.
The reaction between the triosmium cluster 1,2-Os3(CO)10(MeCN)2 and the diphosphine pincer ligand 4,6-bis(diphenylphosphinomethyl)-m-xylene (dppx) has been examined and found to yield the pincer-bridged cluster 1,2-Os3(CO)10(dppx) (2) as the major product, in addition to the pincer-bridged cluster 1,2-Os3(CO)10[1-diphenylphosphino-1-{(2,4-dimethyl-5-diphenylphosphinomethyl)phenyl}-propan-2-ol] (3) in trace amounts (<2% yield). Both cluster products have been isolated and their molecular structures determined by crystallographic analyses. The structural highlights of compounds 2 and 3, which represent the first examples of pincer-ligated metal clusters, are discussed. The origin of the functionalized diphosphine ligand in 3 is traced to the ethanol solvent that was used in the recrystallization of the dppx ligand.  相似文献   

12.
The high nuclearity mixed metal cluster monoanions [Os10C(CO)24Cu(NCMe)]? (I) and [Os10C(CO)24AuPPh3]? (II) have been obtained by reaction of the carbido-dianion [Os10C(CO)24]2? (III) with one equivalent of [Cu(NCMe)4] [BF4] and Ph3PAuCl, respectively, in CH2Cl2. X-ray analysis of the [PPh3Me]+ salts of I and II show that the Cu and Au ligands have added to capping tetrahedra of the dianion III in μ3- and μ2-bridging positions, respectively.  相似文献   

13.
Two new compounds Pd2Os3(CO)12 , 13 and Pd3Os3(CO)12 , 14 have been obtained from the reaction of with Os3(CO)12 at room temperature. The products were formed by the addition of two and three groups to the Os–Os bonds of Os3(CO)12. Compounds 13 and 14 interconvert between themselves by intermolecular exchange of the groups in solution. Compounds 13 and 14 have been characterized by single crystal X-ray diffraction analyses.Dedicated to Professor Brian F. G. Johnson on the occasion of his retirement – 2005.  相似文献   

14.
Reaction between Os(CO)2(PPh3)3 and Me3SnH produces Os(SnMe3)H(CO)2(PPh3)2 (1). Multinuclear NMR studies of solutions of 1 reveal the presence of four geometrical isomers, the major one being that with mutually cis triphenylphosphine ligands and mutually trans CO ligands. Os(SnMe3)H(CO)2(PPh3)2 undergoes a redistribution reaction, at the trimethylstannyl ligand, when treated with Me2SnCl2 giving Os(SnMe2Cl)H(CO)2(PPh3)2 (2). Solutions of 2 again show the presence of four isomers but now the major isomer is that with mutually trans triphenylphosphine ligands and mutually cis CO ligands. The redistribution reaction of 1 with SnI4 produces Os(SnMeI2)H(CO)2(PPh3)2 (3) which exists in solution as only one isomer, that with mutually trans triphenylphosphine ligands and mutually trans CO ligands. Treatment of 3 with I2 cleaves the Os-H bond with retention of geometry giving Os(SnMeI2)I(CO)2(PPh3)2 (4). The crystal structure of 4 has been determined. No isomerization of the trans dicarbonyl complex 4 occurs when 4 is heated, instead there is a formal loss of “MeSnI” and formation of OsI2(CO)2(PPh3)2 (5).  相似文献   

15.
The reactions of Os3(CO)12 and Os3(CO)10(NCMe)2 with NEt3 have been reinvestigated. Two new products, Os3(CO)10(μ-CH2C(H)?NEt2)(μ-H)) (2) and Os3(CO)10(syn-μ-η1-CHCHNEt2)(μ-H) (3) were obtained in low yields, 4% and 7%, in addition to the previously reported compound Os3(CO)10(anti-μ-η1-CHCHNEt2(μ-H) (1) (20% yield) when the reaction was conducted at 25°C using Os3(CO)10(NCMe)2. Compounds 2 and 3 were characterized by IR, 1H NMR and single-crystal X-ray diffraction analyses. Compound 2 contains a bridging methyl-metallated N-ethylimine ligand formed by the cleavage of one ethyl group from the NEt3. Compound 3 is an isomer of 1 in which the bridging ligand has a syn conformation with respect to the cluster as compared with the anti conformation in 1. Compound 3 slowly isomerizes to 1. Compound 3 is de-carbonylated by exposure to UV radiation and is transformed to the new compound Os3(CO)93-CC(H)?NEt2)(μ-H)2 (4) (58% yield) by an additional CH activation to form a triply bridging η1-diethylaminovinylidene ligand. Compound 4 isomerizes to the compound Os3(CO)93-HCCNEt2)(μ-H)2 (5) (70% yield) at 68°C. The latter contains a triply briding ynamine ligand which exhibits structural and reactivity features that are characteristic of a carbene ligand at the amine-substituted carbon atom. Crystal data: for 2, space group = P21/c, a = 9.236(2) Å, b = 12.469(2) Å, c = 18.107(3) Å, β = 104.67(1)°, Z = 4, 2518 reflections, R = 0.031; for 3, space group = P21/m, a = 7.644(1) Å, b = 12.706(2) Å, c = 11.912(2) Å, β = 108.02(1)°, Z = 2, 1295 reflections, R = 0.030; for 4, space group = P21/n, a = 10.233(2) Å, b = 14.834(4) Å, c = 14.538(2) Å, β = 99.88(2)°, Z = 4, 2403 reflections, R = 0.036.  相似文献   

16.
17.
The isomerisation of H2Os3(CO)10[CN(CH2)3Si(OEt)3] to HOs3(CO)10-[CN(H)(CH2)3Si(OEt)3] is accelerated by interaction with some oxides; both complexes afford HOs3(CO)10[CN(H)(CH2)3Si(OEt)3it-x(O)x] as oxide supported clusters.  相似文献   

18.
The complex doublet potential energy surface of the CH(2)NO(2) system is investigated at the B3LYP/6-31G(d,p) and QCISD(T)/6-311G(d,p) (single-point) levels to explore the possible reaction mechanism of the triplet CH(2) radical with NO(2). Forty minimum isomers and 92 transition states are located. For the most relevant reaction pathways, the high-level QCISD(T)/6-311 + G(2df,2p) calculations are performed at the B3LYP/6-31G(d,p) geometries to accurately determine the energetics. It is found that the top attack of the (3)CH(2) radical at the N-atom of NO(2) first forms the branched open-chain H(2)CNO(2) a with no barrier followed by ring closure to give the three-membered ring isomer cC(H(2))ON-O b that will almost barrierlessly dissociate to product P(1) H(2)CO + NO. The lesser followed competitive channel is the 1,3-H-shift of a to isomer HCN(O)OH c, which will take subsequent cis-trans conversion and dissociation to P(2) OH + HCNO. The direct O-extrusion of a to product P(3) (3)O + H(2)CNO is even much less feasible. Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the title reaction is expected to be rapid, as is consistent with the measured large rate constant at room temperature. Formation of the other very low-lying dissociation products such as NH(2) + CO(2), OH + HNCO and H(2)O + NCO seems unlikely due to kinetic hindrance. Moreover, the (3)CH(2) attack at the end-O of NO(2) is a barrier-consumed process, and thus may only be of significance at very high temperatures. The reaction of the singlet CH(2) with NO(2) is also briefly discussed. Our calculated results may assist in future laboratory identification of the products of the title reaction.  相似文献   

19.
The reaction of H2Os3(CO)10 with CF3CN in hexane at 80°C leads to two isomeric products. The isomer constituting the major product contains a 1,1,1-tri-fluoroethylidenimido ligand which bridges one edge of the Os3 triangle via the nitrogen, atom and may be formulated as (μ-H)Os3(CO)10(μ-NC(H)CF3) (I). The minor product, formulated as (μ-H)Os3(CO)10(μ-η2-HNCCF3) (II), contains a 1,1,1-trifluoroacetimidoyl ligand which is also edge-bridging, being N-bonded to one Os atom and C-bonded to the other. Thermolysis of I and II in solution results in loss of a CO group in each case to give (μ-H)Os3(CO)9?32-NC(H)CF3) (III) and (μ-H)Os3(CO)932-HNCCF3) (IV), respectively, which, it is proposed, are structurally related to I and II, but with the CN group coordinated also to the third Os atom in place of a CO group. In the case of IV this proposal has been confirmed by an X-ray crystallographic analysis. The compound crystallises in space group C2/c with a = 14.258(7), b = 13.486(10), c = 18.193(8) Å, β = 92.68(4)°, and Z = 8. The structure was solved by a combination of direct methods and Fourier difference techniques, and refined by full-matrix least squares to R = 0.054 for 2489 unique observed diffractometer data. Reaction of I with Et3P gives a 1 : 2 adduct which is formulated as (μ-H)Os3(CO)10[μ-N?C(H)(CF3)PEt3] (V) on the basis of NMR evidence.  相似文献   

20.
Three new compounds, PtOs(3)(CO)(12)(PBu(t)(3)) (10), Pt(2)Os(3)(CO)(12)(PBu(t)(3))(2) (11), and Pt(3)Os(3)(CO)(12)(PBu(t)(3))(3) (12), have been obtained from the reaction of Pt(PBu(t)(3))(2) with Os(3)(CO)(12) (9). The products were formed by the sequential addition of 1-3 Pt(PBu(t)(3)) groups to the three Os-Os bonds of the metal cluster of Os(3)(CO)(12). In solution, compounds 10-12 interconvert among themselves by intermolecular exchange of the Pt(PBu(t)(3)) groups. When 11 is treated with PPh(3), the mono- and bis(PPh(3)) derivatives of 9, Os(3)(CO)(11)(PPh(3)) and Os(3)(CO)(10)(PPh(3))(2), were obtained by elimination of the Pt(PBu(t)(3)) groups together with one and two CO ligands, respectively. When heated, compound 11 was transformed into the new compound Pt(2)Os(3)(CO)(10)(PBu(t)(3))(PBu(t)(2)CMe(2)CH(2))(mu-H) (13) by the loss of two CO ligands and a metalation of one of the methyl groups of one of the PBu(t)(3) ligands. Compounds 10-13 have been characterized by single-crystal X-ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号