首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A convenient one-pot method for the synthesis of substituted quinolines via the reaction of aniline and aldehyde in the presence of a Lewis acid (AlCl3) and an oxidant (H2O2) has been developed. Hydrogen peroxide was found to promote the reaction by its function as a hydrogen hunter, hindering the formation of by-product N-alkylaniline. The effect of the oxidant on the yield and selectivity was studied. When the molar ratio of aniline, n-butyraldehyde, and H2O2 was 1:3:0.5 at 25 °C, the yield of 3-ethyl-2-propylquinoline was improved from 64% (reaction without H2O2) to 84% (with H2O2), and the quinoline selectivity was improved to almost 100%. Moreover, the reaction time was obviously reduced. The substituent effect was also investigated in this work.  相似文献   

2.
When the molybdenum oxo(peroxo) acetylide complex [CpMo(O? O)(O)C?CPh] is used as a catalyst for the oxidation of olefins, completely different product selectivity is obtained depending on the oxidant employed. When tert‐butyl hydroperoxide (TBHP, 5.5 M ) in dodecane is used as the oxidant for the oxidation of cyclohexene, cyclohexene oxide is formed with high selectivity. However, when H2O2 is used as the oxidant, the corresponding cis‐1,2‐diol is formed as the major product. Calculations performed by using density functional theory revealed the nature of the different competing mechanisms operating during the catalysis process and also provided an insight into the influence of the oxidant and hydrogen bonding on the catalysis process. The mechanistic investigations can therefore serve as a guide in the design of molybdenum‐based catalysts for the oxidation of olefins.  相似文献   

3.
New 3,3‐diphenylpropoxyphthalonitrile (5) was obtained from 3,3‐diphenylpropanol (3) and 4‐nitrophthalonitrile (4) with K2CO3 in DMF at 50 °C. The novel cobalt(II) phthalocyanine complexes, tetrakis‐[2‐(1,4‐dioxa‐8‐azaspiro[4.5]dec‐8‐yl)ethoxy] phthalocyaninato cobalt(II) (2) and tetrakis‐(3,3‐diphenylpropoxy)phthalocyaninato cobalt(II) (6) were prepared by the reaction of the phthalonitrile derivatives 1 and 5 with CoCl2 by microwave irradiation in 2‐(dimethylamino)ethanol for at 175 °C, 350 W for 7 and 10 min, respectively. These new cobalt(II)phthalocyanine complexes were characterized by spectroscopic methods (IR, UV–visible and mass spectroscopy) as well as elemental analysis. Complexes 2 and 6 are employed as catalyst for the oxidation of cyclohexene using tert‐butyl hydroperoxide (TBHP), m‐chloroperoxybenzoic acid (m‐CPBA), aerobic oxygen and hydrogen peroxide (H2O2) as oxidant. It is observed that both complexes can selectively oxidize cyclohexene to give 2‐cyclohexene‐1‐ol as major product, and 2‐cyclohexen‐1‐one and cyclohexene oxide as minor products. TBHP was found to be the best oxidant since minimal destruction of the catalyst, higher selectivity and conversion were observed in the products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Two new Mn(II) complexes, [Mn(C6H5COO)(H2O)(phen)2](ClO4)(CH3OH) ( 1 ) and [Mn2(μ‐C6H5COO)2(bipy)4]?2(ClO4) ( 2 ) (phen = 1,10‐phenanthroline; bipy = 2,2′‐bipyridine), were synthesized and characterized using UV–visible and infrared spectroscopies and single‐crystal X‐ray diffraction analyses. Complexes 1 and 2 have six‐coordinate octahedral geometry around the Mn(II) centre. Complex 1 is a monomer and consists of a deprotonated monodentate benzoate ligand together with two neutral bidentate amine ligands (phen) and a water molecule. Complex 2 has a dinuclear structure in which two Mn(II) ions share two carboxylate groups, adopting a two‐atom bridging mode, and two chelated bipy ligands. Both complexes catalyse the oxidation of alcohols and alkenes in a homogeneous catalytic system consisting of the Mn(II) complex and tert‐butyl hydroperoxide (TBHP) in acetonitrile. The system yields good to quantitative conversions of various alkenes and alcohols, such as styrene, ethylbenzene and cyclohexene to their corresponding ketones, and primary alcohols and 1‐octanol, 1‐heptanol, cyclohexanol, benzyl alcohols and cinnamyl alcohol to their corresponding aldehydes and carboxylic acids. Complexes 1 and 2 exhibit very high activity in the oxidation of cyclohexene to cyclohexanone (ca 80% selectivity) as the main product (ca 94% conversion in 1 h) and of cinnamyl alcohol to cinnamaldehyde (ca 64% selectivity) as the main product (ca 100% conversion in 0.5 h) with TBHP at 70°C in acetonitrile. In addition, optimum reaction conditions were also determined for benzyl alcohol with complexes 1 and 2 and TBHP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Tetrakis[heptadecafluorononyl] substituted phthalocyanine complexes were prepared by template synthesis from 4‐(heptadecafluorononyloxy)phthalonitrile with Co(CH3COO)·2H2O or PdCl2 in 2‐N, N‐dimethylaminoethanol. The corresponding phthalonitrile was obtained from heptadecafluorononan‐1‐ol and 4‐nitrophthalonitrile with K2CO3 in DMF at 50 °C. The structures of the compounds were characterized by elemental analysis, FTIR, UV–vis and MALDI‐TOF MS spectroscopic methods. Metallophthalocyanines are soluble in fluoroalkanes such as perfluoromethylcyclohexane (PFMCH). The complexes were tested as catalysts for benzyl alcohol oxidation with tert‐butylhydroperoxide (TBHP) in an organic–fluorous biphasic system (n‐hexane–PFMCH). The oxidation of benzyl alcohol was also tested with different oxidants, such as hydrogen peroxide, m‐chloroperoxybenzoic acid, molecular oxygen and oxone in n‐hexane–PFMCH. TBHP was found to be the best oxidant for benzyl alcohol oxidation since higher conversion and selectivity were observed when this oxidant was used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A new concept to control catalysis and catalytic reaction through partial oxidation of alkenes with O2 is described. Oxidation of alkenes was studied by alkene/Pd-anode/H3PO4-electrolyte/cathode/O2 fuel cell (FC). An idea based on electrocatalysis and electrochemical reactions to control reaction rates and product selectivity was proposed and proven through the oxidation of propylene, Wacker and π-allyl oxidation. The oxidation rate and the product selectivity to the Wacker and the π-allyl oxidations could be controlled by changing electrode potentials. We could active control oxidation states of Pd on the anode, Pd(II) or Pd(0), during the oxidation from outer circuit. The oxidation states of Pd on the anode decided the product selectivity.  相似文献   

7.
Nickel oxide powder was prepared by simple calcination of nickel nitrate hexahydrate at 500 °C for 5 h and used as a catalyst for the oxidation of cyclohexane to produce the cyclohexanone and cyclohexanol—KA oil. Molecular oxygen (O2), hydrogen peroxide (H2O2), t-butyl hydrogen peroxide (TBHP) and meta-chloroperoxybenzoic acid (m-CPBA) were evaluated as oxidizing agents under different conditions. m-CPBA exhibited higher catalytic activity compared to other oxidants. Using 1.5 equivalent of m-CPBA as an oxygen donor agent for 24 h at 70 °C, in acetonitrile as a solvent, NiO powder showed exceptional catalytic activity for the oxidation of cyclohexane to produce KA oil. Compared to different catalytic systems reported in the literature, for the first time, about 85% of cyclohexane was converted to products, with 99% KA oil selectivity, including around 87% and 13% selectivity toward cyclohexanone and cyclohexanol, respectively. The reusability of NiO catalyst was also investigated. During four successive cycles, the conversion of cyclohexane and the selectivity toward cyclohexanone were decreased progressively to 63% and 60%, respectively, while the selectivity toward cyclohexanol was increased gradually to 40%.  相似文献   

8.
Silica supported chromium is a heterogeneous, active and selective catalyst for the liquid phase oxidation of cyclohexanol by tert-butyl hydroperoxide (TBHP) in the presence or absence of oxygen. It is also active for the decomposition of TBHP. The reactivity at 70ºC and atmospheric pressure is higher than over other catalysts and the cyclohexanone selectivity is 100%.  相似文献   

9.
Pyrite catalyzes oxidation of various organic contaminants by dissolved oxygen (DO) under acidic conditions; however, the catalytic mechanism under alkaline conditions is still not clear. In this study, we observe increased oxidation rates of aniline with increasing pHs (7.0–11.0). Electron paramagnetic resonance (EPR) analysis and quenching experiments rule out contributions of •OH, O2•−, 1O2 and Fe (IV) to aniline oxidation and suggest that the Fe (III)–OOH peroxo and/or H2O2 are the primary oxidative species in the oxidation of aniline at pH 11.0. In addition, 200 mg L−1 H2O2 does not apparently increase the oxidation rate of aniline, which also rules out the predominant contribution of the produced H2O2 to aniline oxidation. We therefore suggest that the Fe (III)–OOH peroxo is indeed the primary oxidative species in the pyrite–DO system under alkaline conditions. Analyses of solid total organic carbon (TOC), gas chromatography–mass spectrometry and Fourier-transform infrared spectroscopy further reveal that more than 83.3% aniline has been polymerized to polyaniline, instead of being mineralized into CO2 and H2O, indicating that H-abstraction from aniline by the Fe (III)–OOH peroxo is an important step in the oxidation of aniline under alkaline conditions. This study provides new insight into the oxidative species in the pyrite–DO system, and opens a new door for organic degradations under alkaline conditions.  相似文献   

10.
The aromatic compounds p‐nitrobenzaldehyde, p‐hydroxybenzaldehyde, naphthalene, toluene, catechol, quinol, aniline and toluidine dissolved in aqueous acetic acid or aqueous medium were oxidized in quantitative to good yields by 50% H2O2 in the presence of traces of RuCl3 (~10?8 mol; substrate/catalyst ratio 1488:1 to 341 250:1). Conditions for highest yields, in the most economical way, were obtained. Higher catalyst concentrations decrease the yield. Oxidation in aromatic aldehydes is selective at the aldehydic group only. In the case of hydrocarbons, oxidation results in the introduction of a hydroxyl group with >85% (in the case of toluene) selectivity for the ortho position. Formation of low‐molecular‐weight polyaniline was reduced to 10%, along with 90% formation of higher molecular weight polyaniline. In this new, simple and economical method, which is environmentally safe and requires less time, oxo‐centered carboxylate species of ruthenium(III) in acetic acid medium and hydrated ruthenium(III) chloride in aqueous medium probably catalyze the oxidation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The heterogeneous reduction of nitrobenzene by thiophenol catalyzed by the dianionic bis(2‐sulfanyl‐2,2‐diphenylethanoxycarbonyl) dioxomolybdate(VI) complex, [MoVIO2(O2CC(S)(C6H5)2)2]2−, intercalated into a Zn(II)–Al(III) layered double hydroxide host [Zn3−xAlx(OH)6]x+, has been investigated under anaerobic conditions. Aniline was found to be the only product formed through a reaction consuming six moles of thiophenol for each mol of aniline produced. The kinetics of the system have been analyzed in detail. In excess of thiophenol, all reactions follow first‐order kinetics (ln([PhNO2]/[PhNO2]0) = −kappt) with the apparent rate constant kapp being a complex function of both initial nitrobenzene and thiophenol concentrations, as well as linearly dependent on the amount of solid catalyst used. A mechanism for this catalytic reaction consistent with the kinetic experiments as well as the observed properties of the intercalated molybdenum complex has thiophenol inducing the initial coupled proton–electron transfer steps to form an intercalated MoIV species, which is oxidized back to the parent MoVI complex by nitrobenzene via a two‐electron oxygen atom transfer reaction that yields nitrosobenzene. This mechanism is widespread in enzymatic catalysis and in model chemical reactions. The intermediate nitrosobenzene thus formed is reduced directly by excess thiophenol to aniline. The values of rate coefficients indicate that reduction of nitrobenzene proceeds much faster than proton‐assisted oxidation of thiophenol. This may account for the observation that the presence of protonic amberlite IR‐120(H) increases considerably the rate of the overall reaction catalyzed. Activation parameters in excess of the protonic resin and PhSH were ΔH = 80 kJ mol−1 and ΔS = −70 J mol−1 K−1. The large negative activation entropy is consistent with an associative transition state. The present system is characterized by a well‐defined catalytic cycle with multiple‐turnovers reductions of nitrobenzene to aniline without appreciable deactivation. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 212–224, 2001  相似文献   

12.
Dialkyl, aryl-alkyl, benzylic, and benzothiophenic sulfides are selectively oxidized to sulfoxides or sulfones, with stoichiometric amounts of H2O2 (aq) or TBHP, in the presence of complexes Cp′Mo(CO)3Cl, CpMoO2Cl and the mesoporous material MCM-41-2 as catalysts. The use of the thianthrene 5-oxide (SSO) probe shows that CpMo(CO)3Cl/H2O2 or TBHP are electrophilic oxidants (Xso ? 15). The same conclusion is drawn from competition experiments with a mixture of p-ClC6H4SCH3 and C6H5SOCH3.  相似文献   

13.
The formidable reactivity of the oxygen-evolving center near photosystem II is largely based on its protein environment that stabilizes it during catalysis. Inspired by this concept, the water-soluble Mn12 clusters Mn12O12(O2CC6H3(OH)2)16(H2O)4 (3,5DHMn12) and Mn12O12(O2CC6H3(OH)3)16(H2O)4 (3,4,5THMn12) were developed as efficient electrocatalysts for water oxidation. In this work, the role of the −OH groups in the electrocatalytic process was explored by describing the structural and electrocatalytic properties of two new Mn12 clusters, 3,4DHMn12 and 2,3DHMn12 , having one −OH group in the meta position relative to the benzoate-Mn moiety, and one at the para or ortho position, respectively. The Mn centers in 3,4DHMn12 were discovered to have lower oxidation potential compared with those in 2,3DHMn12 , and thus, 3,4DHMn12 can catalyze water oxidation with higher rate and TON than 2,3DHMn12 . Hence, the role of the −OH groups in the electrocatalysis was established, being involved in electronic stabilization of the Mn centers or in proton shuttling.  相似文献   

14.
Abstract

A novel manganese compound, [Mn2(μ1,3-6-CH3-2-NH2C6H4COO)2(bipy)4](ClO4)2 (bipy = 2,2′-bipyridine), was synthesized and used as a catalyst precursor in the oxidation of alkenes and primary alcohols to corresponding aldehydes, ketones, and acids. The six-coordinate compound has a binuclear structure in which two Mn(II) ions adopt a syn-anti μ1,3-bridging mode with two carboxylate groups and two chelated bipy ligands. The compound exhibits good activity in the oxidation of cyclohexene to 2-cyclohexene-1-one as the major product (93% conv. in 3 h, 79.3% selectivity) and of cinnamyl alcohol to cinnamaldehyde as the major product with 46% selectivity (100% conv. in 1.5 h) with tert-butyl hydroperoxide (TBHP) in acetonitrile at 70 °C. Furthermore, the catalase-like activity of the compound was studied in different solvents (acetonitrile, methanol, Tris-HCl buffer; TOF = 29,910 h?1 in Tris-HCl buffer).  相似文献   

15.
Metallosilicate zeolites containing Ti and V, TS-2 and VS-2, have been synthesized using tetrabutylammonium cation as the template. Although both Ti and V exist in zeolite framework in a highly dispersed state, V easily leaches by K2CO3 or H2O2 treatments in contrast to Ti. Spin trapping experiments and relative reactivity of linear/cyclic alkanes indicate that the oxidation of alkanes over TS-2 and VS-2 proceed by different mechanisms; it is conceivable that the oxidation occurs by way of the attack of ·OH species produced from the V species in the zeolite framework with H2O2.  相似文献   

16.
The catalytic oxidative cyclocondensation of the o‐aminophenols 1af was investigated. The oxidants used were air/laccase, H2O2/horseradish peroxidase, H2O2/ebselen (3), and TBHP/diphenyl diselenide 4. The products obtained were 2‐amino‐3H‐phenoxazin‐3‐one—questiomycin A, its derivative 2b, and cinnabarinic acid and actinocin (2c,d). Substrates with methyl groups at 4 and 5 positions of benzene ring were converted to different dihydrophenoxazinones 2g,h. Compounds having chlorine atoms at the same positions underwent oxidation to planar phenoxa-zinones 2e,f with elimination of one hydrochloride molecule.  相似文献   

17.
Abstract

An efficient, chemoselective, and environmental friendly procedure for the oxidation of sulfides to sulfoxides is described. Various types of aromatic and aliphatic sulfides are selectively oxidized to sulfoxides in good to excellent yields using 30% H2O2 in the presence of catalytic amounts of a p-TsOH under solvent-free conditions at room temperature.  相似文献   

18.
Polyferroorganosiloxanes were studied as catalysts for homogeneous oxidation of alkanes by hydrogen peroxide tinder mild conditions. In the oxidation of cyclohexane the catalysts are characterized by high efficiency (conversion of hydrogen peroxide is 25%) and stability Kip to 80 cycles per gat NJ The min product of the oxidation W do presence a 2,4,6-tri-tert-btitylphenol is cyclohexanol (tip to 35% per H2O2).  相似文献   

19.
Arylborinic acids represent new, efficient, and underexplored hydrogen peroxide-responsive triggers. In contrast to boronic acids, two concomitant oxidative rearrangements are involved in the complete oxidation of these species, which might represent a major limitation for an efficient effector (drug or fluorophore) release. Herein, a comprehensive study of H2O2-mediated unsymmetrical arylborinic acid oxidation to investigate the factors that could selectively guide their oxidative rearrangement is described. The o-CF3 substituent was found to be an excellent directing group allowing a complete regioselectivity on borinic acid models. This result was successfully applied to synthesizing new borinic acid-based fluorogenic probes, which exclusively release the fluorescent moiety upon H2O2 treatment. These compounds maintained their superior kinetic properties compared to boronic acids, thus further enhancing the potential of arylborinic acids as valuable new H2O2-sensitive triggers.  相似文献   

20.
Spinel systems with the composition of Cu1−xZnxCr2O4 [x = 0 CCr, x = 0.25 CZCr-1, x = 0.5 CZCr-2, x = 0.75 CZCr-3 and x = 1 ZCr] were prepared by homogeneous co-precipitation method and were characterized by X-ray diffraction (XRD) and FT-IR spectroscopy. Elemental analysis was done by EDX, and surface area measurements by the BET method. The redox behavior of these catalysts in cyclohexane oxidation at 243 K using TBHP as oxidant was examined. Cyclohexanone was the major product over all catalysts with some cyclohexanol. 69.2% selectivity to cyclohexanol and cyclohexanone at 23% conversion of cyclohexane was realized over zinc chromite spinels in 10 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号