首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dependence of intramolecular valence delocalization on crystal form in mixed-valence trinuclear iron phenylacetate [Fe 2 III FeIIO(PhCH2CO2)6(py)3] was found. This complex was obtained in two different crystal forms: a columnar and a needle crystal form. Mössbauer spectra of the columnar crystals show a temperature-dependent valence delocalization, while the needle crystals show a trapped mixed-valence state from a lower temperature up to room temperature.  相似文献   

2.
Heating ammonium sulphate to near its dissociation temperature and then quenching to room temperature produces a stable triplet state center that is identified as NH2+. The symmetry of the EPR spectra indicates that the center is located in two non equivalent sites with each of these sites having slightly different EPR parameters and two measurably differents orientations. Thus the center is apparently occupying the positions of the NH4+ groups in the perfect lattice. A study is made of this center both at room temperature and also well below the ferroelectric phase transition of (NH4)2SO4. It is found that above and below the transition temperature (?50°C) there is very little temperature dependence of the EPR spectra but at the phase transition there is an abrupt change in the spectra. The number of detectable centers doubles below the phase transition indicating that the inversion symmetry of the NH2+ sites is eliminated at the transition temperature.  相似文献   

3.
This work was devoted to X-ray diffraction study and investigations of temperature changes of the optical absorption edge of (NH2(C2H5)2)2CoCl4 crystals in the region of possible phase transitions. The X-ray powder diffraction data revealed the monoclinic phase at room temperature – space group P2/n. The cobalt atom was found to be square-plane coordinated by four chlorine atoms resulting [CoCl4]2– anion, which is surrounded by two DEA+ cations. It was shown that the low-energy tail of the absorption edge in these materials possesses an exponential shape. In the temperature range above 255?K it follows the empirical Urbach’s rule. The obtained experimental data confirmed the existence of the ferroelastic phase in (NH2(C2H5)2)2CoCl4 in the temperature range between 255 and 326?K. The anomalous behaviour of the investigated parameters observed at the temperatures below 255?K would be related to earlier unknown phase transitions.  相似文献   

4.
The samples of Eu1–x Sr x FeO3–y (x=0.0–1.0) were prepared by the solid state reaction method. Their X-ray diffraction patterns and57Fe Mössbauer spectra at room temperature were measured. It is found that Sr ions incorporate in the lattice of EuFeO3, the change of crystal structure is related to the dopant.57Fe Mössbauer spectra consist of one magnetic, one doublet and one single paramagnetic components. The Fe ions in the cubic phase are in intermediate valence state between Fe(III) and Fe(IV) and may participate in electron hopping.  相似文献   

5.
We report structural, magnetic and electronic structure study of Mn doped TiO2 thin films grown using pulsed laser deposition method. The films were characterized using X-ray diffraction (XRD), dc magnetization, X-ray magnetic circular dichroism (XMCD) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements. XRD results indicate that films exhibit single phase nature with rutile structure and exclude the secondary phase related to Mn metal cluster or any oxide phase of Mn. Magnetization studies reveal that both the films (3% and 5% Mn doped TiO2) exhibit room temperature ferromagnetism and saturation magnetization increases with increase in concentration of Mn doping. The spectral features of XMCD at Mn L3,2 edge show that Mn2+ ions contribute to the ferromagnetism. NEXAFS spectra measured at O K edge show a strong hybridization between Mn, Ti 3d and O 2p orbitals. NEXAFS spectra measured at Mn and Ti L3,2 edge show that Mn exist in +2 valence state, whereas, Ti is in +4 state in Mn doped TiO2 films.  相似文献   

6.
EPR investigations using Cu2+ ion as a probe have been performed on supersaturated sucrose solution with percent concentration c = 66 as a function of temperature T, and at room temperature as a function of c. The motionally averaged spectrum of [Cu(H2O)6]2+ was used to monitor the changes in intermolecular interactions that occur as a function of [c, T]. A drastic increase in the line width, symptomatic of increase in the rotational correlation time of [Cu(H2O)6]2+, is observed between 293 and 288 K. The motionally averaged spectrum disappears below 281 K. The motionally averaged spectrum is also absent in the room temperature spectra of the solution with c= 85. Even in the [c, T] range where [Cu(H2O)6]2 is found to be nearly static, these molecules appear to have an orientational fluctuation manifesting in the m 1 dependence of the line width of the parallel component.  相似文献   

7.
Mössbauer studies of 151Eu in Eu2VO4 reveal a very sharp valence averaging phase transition at 450 K. Two equally intense absorption lines, differing in isomer shift by 12.7 mm/s, corresponding to Eu2+ and Eu3+, collapse to a single absorption line at the average isomer shift. The transition is confirmed by X-ray and resistivity measurements. In RSr2Fe3O9 (R=Pr, Sm) 57Fe studies reveal averaging valence phase transitions coinciding with magnetic order phase transitions at 190 K and 140 K, respectively. Two magnetic sextets, corresponding to 2Fe3+ + Fe5+, collapse to two singlets corresponding to 2Fe4+ + Fe3+.  相似文献   

8.
T. J. Zhu  L. Lu ¶  L. Q. Yao 《哲学杂志》2013,93(35):3729-3739
Pb(Zr0.52Ti0.48)O3 (PZT) amorphous thin films were deposited on Si substrates at room temperature and 573?K by pulsed laser deposition. The as-deposited films were subsequently annealed at various laser power densities using a KrF pulsed excimer laser irradiation to induce the phase transformation from amorphous to ferroelectric perovskite structure. Structural analysis shows the possibility of transformation from pyrochlore to perovskite transformation when irradiated above a laser power density of 1.4?MW/cm2, which is in agreement with the thermal simulation. The surface quality of the PZT films deposited on 573?K is remarkably superior to that deposited at room temperature due to the enhanced thin structure and composition homogeneity. Almost all the pyrochlore phase transformed into perovskite structure after annealing at 2.8?MW/cm2 for 120?s for both PZT films deposited at room temperature and 573?K, respectively. P-E hysteresis measurement of the laser-treated PZT shows relatively low remnant polarization P r of about 1.2?μC/cm2.  相似文献   

9.
The dielectric properties, X-ray emission spectra, and M?ssbauer effect in ceramics made of PbFe1/2Nb1/2O3 (PFN) compound were studied. The relaxation dynamics revealed above Curie temperature TC at a frequency of 3 × 10−2–105 Hz is described in detail. Analysis of the X-ray emission and M?ssbauer spectra showed that at room temperature (T = 300 K), the iron ions in PFN are mainly in the high-spin valence state Fe3+. The M?ssbauer spectral parameters obtained at T = (300, 353, and 393 K) indicate an octahedral environment for Fe3+ in both the ferroelectric and paraelectric phases.  相似文献   

10.
The compound CaCo2 with the C15 cubic Laves phase structure and an estimated density of 5.21 g/cm3 has been synthesized at 8.0 GPa pressure. Magnetization measurements showed that the compound CaCo2 is a ferromagnet with Curie temperature 528 K and magnetic moment per Co atom 1.75 μB at T=4.2 K. LMTO calculations of the electronic band structure showed that CaCo2 forms as a result of an s-d electronic transition of Ca and in the ground state it is a ferromagnet with a high magnetic moment per Co atom. Pis'ma Zh. éksp. Teor. Fiz. 68, No. 12, 864–869 (25 December 1998)  相似文献   

11.
Mössbauer spectra of La1–x Ba x FeO3–y recorded at room temperature for various values of x show a six-line and/or a single-line subspectrum. The six-line subspectrum with IS=0.41 mm/s and H=52 T results from an orthorhombic perovskite containing only Fe3+ ions. The single-line subspectrum at 0.17 mm/s from a cubic perovskite can be assigned to neither Fe3+ nor Fe4+ but to an intermediate valence state, which may be due to electron hopping between the Fe3+ and Fe4+ ions on the identical octahedral sites. The temperature dependence of electron hopping in the compound La0.40Ba0.60FeO3–y is presented.  相似文献   

12.
Abstract

A phase transition from Ca(OH)2 I (portlandite) to Ca(OH)2 II at high pressure and temperature has been confirmed, using in situ x-ray diffraction in a multianvil high pressure device (DIA). The structure was determined at 9.5 GPa and room temperature from data collected after heating the sample at 300°C at 7.2 GPa in a diamond anvil cell. Both the Le Bail fit and preliminary Rietveld refinement suggest that the new phase, which reverts to Ca(OH), I during pressure release, has a structure related to that of baddeleyite (ZrO1); it is monoclinic (P21/c) with a= 4.887(2), b= 5.834(2), c = 5.587(2), β = 99.74(2)°. The coordination number of Ca increases from six to seven (5 + 2) across the transition. At 500°C, the phase boundary is bracketed at 5.7 ± 0.4 GPa by reversal experiments performed in the DIA.  相似文献   

13.
A new chemical compound, (NH4)2KWO3F3, was synthesized. The Rietveld-refined crystal structure was found to be cubic at room temperature and to belong to the elpasolite family (space group ). The heat capacity and unit cell parameters were studied within a broad temperature range. A second-order phase transition was found to occur at 235.4 K and to be well described in terms of phenomenological theory. Hydrostatic pressure broadens the temperature interval of stability of the cubic phase (dT0/dp = −10.8 K GPa−1). A possible model of structural ordering based on a comparison of the entropy parameters and electron density distribution in oxygen and fluorine atoms is discussed.  相似文献   

14.
Successive structural phase transitions of (4-ClC6H4NH3)2CuCl4, which occur in a very narrow temperature range were reinvestigated by Fourier transform nuclear quadrupole resonance (FT NQR) measurements. The phase transitions at 275.5 and 277.0 K were confirmed. The effect of the deuteration of the ammonium end on these transitions was studied. The35Cl NQR frequencies of organic cation were observed to decrease by about 4 kHz and the phase transition temperatures to decrease by about 2 K by the deuteration, suggesting that the ?NH3 + … Cl hydrogen bond is weakened by the deuteration. The magnetic phase transition temperature of 8.6 K showed no remarkable change within experimental error by the deuteration. It was found that the magnetically ordered state is broken by the radio-frequency magnetic field of about 15–35 Oe usually employed in pulsed NQR. However, in the deuterated compound (4-ClC6H4ND3)2CuCl4, the ordered state was found to be stabler for the usual radiofrequency power. By combining with the NQR data of (4-ClC6H4NH3)2CuBr4 and (3,5-Cl2C6H3NH3)2CuCl4, the possibility is discussed of tuning the interlayer interaction between the organic cation layer and the inorganic complex anion layer by the halogen substitution in the organic cation as well as by the halogen replacement in the inorganic complex anion.  相似文献   

15.
This work investigates the evolution of the crystal structure of microwave‐hydrothermal synthesized Ba(Y1/2Nb1/2)O3 powders as a function of firing temperature by Raman spectroscopy. The samples were produced at 200 °C and fired at temperatures ranging from 600 to 1600 °C. Raman spectra were obtained at room temperature for all samples and the results showed that materials fired at 1600 °C exhibited tetragonal (I4/m or ) structure, whereas those fired at lower temperatures exhibited the triclinic (P1 or Ci1) structure. The results were compared with those observed for ceramics obtained by conventional solid‐state methods. It is believed that the lowering of the symmetry verified in materials fired below 1600 °C is a consequence of the local disorder of Y+3 and Nb+5 ions in octahedral sites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The valence of Bi and its substituents Sn and Sb are investigated in the high temperature superconductor (Bi0.8X0.15Sb0.05)2Sr2Ca2Cu3Oy (often denoted 2223) where X=Pb or Sn. Pb and Sn are isoelectronic with the valence states 2+ and 4+; Bi and Sb are as well with valence states 3+ and 5+. The valence state of Sn and Sb has been obtained from Mössbauer spectroscopy: they exist in the high charge states 4+ and 5+ respectively. Sn, Sb, and presumably Pb, take on the high valence state, and so furnish electrons to the conduction band. This is probably the reason why, although the (Pb, Sb)-doping aids in stabilizing the 2223 crystal structure, it is detremental to the electronic properties which lead to the superconducting phase. The valence state of Bi has been studied using X-ray photoelectron spectroscopy (XPS). These results show clearly that the Bi-based superconductor has a metal-like density of states at the Fermi level, and that the valence in the (Pb, Sb)-doped compounds is less than 3. This very surprising change in valence will have a profound effect on the superconducting properties, and is probably associated with the high valent states of Pb, Sn and Sb.  相似文献   

17.
Using a proton-nitrogen double resonance technique we have determined the quadrupole coupling of14N in the room temperature orthorhombic (Cmca), the low temperature tetragonal (P42/ncm), and the monoclinic low temperature (P21/c) phases of (CH3NH3)2CdCl4. In all these phases all nitrogens are chemically equivalent demonstrating that the disorder in the orientations and H-bonding arrangements of the CH3-NH3 groups in theC m c a andP42/ncm phases is indeed dynamic and not static. In the monoclinic phase the14N quadrupole coupling constant equalse 2 qQ/h=880 kHz and the asymmetry parameter is=0.20, wherease 2 qQ/h=790 kHz,=0.1 in the tetragonal low temperature phase ande 2 qQ/h=726 kHz,=0.21 in the room temperature orthorhombic phase. The observed increase in the14N quadrupole coupling constant on going from the orthorhombic phase to the tetragonal low temperature phase which is coupled with a simultaneous decrease in the asymmetry parameter can be understood in terms of a partial freezing in of the dynamic disorder in the C-N bond directions whereas the14N quadrupole coupling tensor in the monoclinic phase is characteristic of a frozen in C-N bond in a deformed lattice, where the N-H — Cl bonds are of different length.  相似文献   

18.
We have studied the high pressure behavior of the α and β-phases of Tb 2(MoO 4)3 using a combination of powder X-ray diffraction and ab initio calculations. The α-Tb 2(MoO 4)3 phase did not undergo any structural phase transition in the pressure range from 0 up to the maximum experimental pressure of 21 GPa. We observed line broadening of the diffraction patterns at pressures above 7 GPa, which may be due to non-hydrostatic conditions. The complete amorphization of the sample was not reached in the pressure range studied, as expected from previous Raman studies. The behavior under pressure of the β-Tb 2(MoO 4)3 phase is similar to that of other rare-earths trimolybdates with the same structure at room temperature. A phase transition was observed at 2 GPa. The new phase, which can be identified as the δ-phase, has never been completely characterized by diffraction studies. A tentative indexation has been performed and good refined cell parameters were obtained. We detect indications of amorphization of the δ-Tb 2(MoO 4)3 phase at 5 GPa.  相似文献   

19.
Optical observations of growth twins and ferroelastic domains and measurements of the rotation of the optical indicatrix were carried out for Rb3H(SeO4)2 and (NH4)3H(SO4)2 using an optical microscope. Taking into account the symmetry reduction from the rhombohedral (Rm) to the monoclinic phase (B2/a) the occurrence of domains and growth twins can be well described. The orientations of oblique ferroelastic walls are well determined by the spontaneous strains s e 11 and s e 23 at room temperature.  相似文献   

20.
Single phase Bi2FeMnO6 films on (100) SrTiO3 substrate were fabricated using a pulsed laser deposition method through optimization of the preparation conditions. The magnetic moment is 0.30μB at 5 K in the magnetic field of 1 T, indicating that B site cations of Fe and Mn are disordered in the sample. The zero‐field‐cooling (ZFC) and field‐cooling (FC) magnetization curves measured from 2 K to 400 K coincide at 360 K. This is consistent with the observation that hysteresis disappears at 360 K, revealing the antiferromagnetic transition at this temperature. A spin‐glass‐like behaviour was observed at low temperature (~100 K) with a cusp of 25 K. Mn shows multiple valence states in the film. It is possibly because Mn2+ and Mn4+ could decrease the Jahn–Teller effect from Mn3+ in the film which results in less lattice distortion. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号