首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel metal-organic frameworks (MOFs) may lead to advances in adsorption and catalysis owing to their superior properties compared to traditional nanoporous materials. A combination of the grand canonical Monte Carlo method and configurational-bias Monte Carlo simulation was used to evaluate the adsorption isotherms of C4-C6 alkane isomer mixtures in IRMOF-1 and IRMOF-6. The amounts of adsorbed linear and branched alkanes increase with increasing pressure, and the amount of branched alkanes is larger than that of the linear ones. The locations of the alkane isomer reveal that the Zn4O clusters of the IRMOFs are the preferential adsorption sites for the adsorbate molecules. The interaction energy between the Zn4O cluster and the adsorbate is larger than that between the organic linker and the adsorbate. It was further confirmed that the Zn4O cluster plays a much more important role in adsorption by pushing a probe molecule into the pore at positions closer to the Zn4O cluster. It is difficult for branched alkane molecules to approach the Zn4O cluster of IRMOF-6 closely owing to strong spatial hindrance. In addition, the adsorption selectivity is discussed from the viewpoints of thermodynamics and kinetics, and the diffusion behavior of n-butane and 2-methylpropane were investigated to illustrate the relationship between diffusion and adsorption.  相似文献   

2.
3.
4.
5.
6.
Chemical and thermal stabilities of isotypic metal-organic frameworks (MOFs) like Al-BDC (Al-benzenedicarboxylate called MIL-53-Al), Cr-BDC (MIL-53-Cr) and V-BDC (MIL-47-V), after purification to remove uncoordinated organic linkers, have been compared to understand the effect of the central metal ions on the stabilities of the porous MOF-type materials. Chemical stability to acids, bases, and water decreases in the order of Cr-BDC>Al-BDC>V-BDC, suggesting stability increases with increasing inertness of the central metal ions. However, thermal stability decreases in the order of Al-BDC>Cr-BDC> V-BDC, and this tendency may be explained by the strength of the metal-oxygen bond in common oxides like Al(2)O(3), Cr(2)O(3), and V(2)O(5). In order to evaluate precisely the stability of a MOF, it is necessary to remove uncoordinated organic linkers that are located in the pores of the MOF, because a filled MOF may be more stable than the same MOF after purification.  相似文献   

7.
8.
A highly porous member of isoreticular MFU‐4‐type frameworks, [Zn5Cl4(BTDD)3] (MFU‐4l(arge)) (H2‐BTDD=bis(1H‐1,2,3‐triazolo[4,5‐b],[4′,5′‐i])dibenzo[1,4]dioxin), has been synthesized using ZnCl2 and H2‐BTDD in N,N‐dimethylformamide as a solvent. MFU‐4l represents the first example of MFU‐4‐type frameworks featuring large pore apertures of 9.1 Å. Here, MFU‐4l serves as a reference compound to evaluate the origin of unique and specific gas‐sorption properties of MFU‐4, reported previously. The latter framework features narrow‐sized pores of 2.5 Å that allow passage of sufficiently small molecules only (such as hydrogen or water), whereas molecules with larger kinetic diameters (e.g., argon or nitrogen) are excluded from uptake. The crystal structure of MFU‐4l has been solved ab initio by direct methods from 3D electron‐diffraction data acquired from a single nanosized crystal through automated electron diffraction tomography (ADT) in combination with electron‐beam precession. Independently, it has been solved using powder X‐ray diffraction. Thermogravimetric analysis (TGA) and variable‐temperature X‐ray powder diffraction (XRPD) experiments carried out on MFU‐4l indicate that it is stable up to 500 °C (N2 atmosphere) and up to 350 °C in air. The framework adsorbs 4 wt % hydrogen at 20 bar and 77 K, which is twice the amount compared to MFU‐4. The isosteric heat of adsorption starts for low surface coverage at 5 kJ mol?1 and decreases to 3.5 kJ mol?1 at higher H2 uptake. In contrast, MFU‐4 possesses a nearly constant isosteric heat of adsorption of ca. 7 kJ mol?1 over a wide range of surface coverage. Moreover, MFU‐4 exhibits a H2 desorption maximum at 71 K, which is the highest temperature ever measured for hydrogen physisorbed on metal–organic frameworks (MOFs).  相似文献   

9.
We present the synthesis and characterization of porous interpenetrated zirconium-organic frameworks (PIZOFs), a new family of metal-organic frameworks obtained from ZrCl(4) and the rodlike dicarboxylic acids HO(2)C[PE-P(R(1),R(2))-EP]CO(2) H that consist of alternating phenylene (P) and ethynylene (E) units. The substituents R(1),R(2) were broadly varied (alkyl, O-alkyl, oligo(ethylene glycol)), including postsynthetically addressable substituents (amino, alkyne, furan). The PIZOF structure is highly tolerant towards the variation of R(1) and R(2). This together with the modular synthesis of the diacids offers a facile tuning of the chemical environment within the pores. The PIZOF structure was solved from single-crystal X-ray diffraction analysis. The PIZOFs are stable under ambient conditions. PIZOF-2, the PIZOF prepared from HO(2)C[PE-P(OMe,OMe)-EP]CO(2)H, served as a prototype to determine thermal stability and porosity. It is stable up to 325 °C in air as determined by using thermogravimetry and powder X-ray diffraction. Argon sorption isotherms on PIZOF-2 revealed a Brunauer-Emmett-Teller (BET) surface area of 1250 m(2) g(-1) and a total pore volume of 0.68 cm(3) g(-1).  相似文献   

10.
Metal-organic frameworks (MOFs), {[Cu(2)(bdcppi)(dmf)(2)]·10DMF·2H(2)O}(n) (SNU-50) and {[Zn(2)(bdcppi)(dmf)(3)]·6DMF·4H(2)O}(n) (SNU-51), have been prepared by the solvothermal reactions of N,N'-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H(4)BDCPPI) with Cu(NO(3))(2) and Zn(NO(3))(2), respectively. Framework SNU-50 has an NbO-type net structure, whereas SNU-51 has a PtS-type net structure. Desolvated solid [Cu(2)(bdcppi)](n) (SNU-50'), which was prepared by guest exchange of SNU-50 with acetone followed by evacuation at 170 °C, adsorbs high amounts of N(2), H(2), O(2), CO(2), and CH(4) gases due to the presence of a vacant coordination site at every metal ion, and to the presence of imide groups in the ligand. The Langmuir surface area is 2450 m(2) g(-1). It adsorbs H(2) gas up to 2.10 wt% at 1 atm and 77 K, with zero coverage isosteric heat of 7.1 kJ mol(-1), up to a total of 7.85 wt% at 77 K and 60 bar. Its CO(2) and CH(4) adsorption capacities at 298 K are 77 wt% at 55 bar and 17 wt% at 60 bar, respectively. Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF. By metal-ion exchange of SNU-51 with Cu(II), {[Cu(2)(bdcppi)(dmf)(3)]·7DMF·5H(2)O}(n) (SNU-51-Cu(DMF)) with a PtS-type net was prepared, which could not be synthesized by a direct solvothermal reaction.  相似文献   

11.
12.
Owing to their high uptake capacity at low temperature and excellent reversibility kinetics, metal-organic frameworks have attracted considerable attention as potential solid-state hydrogen storage materials. In the last few years, researchers have also identified several strategies for increasing the affinity of these materials towards hydrogen, among which the binding of H(2) to unsaturated metal centers is one of the most promising. Herein, we review the synthetic approaches employed thus far for producing frameworks with exposed metal sites, and summarize the hydrogen uptake capacities and binding energies in these materials. In addition, results from experiments that were used to probe independently the metal-hydrogen interaction in selected materials will be discussed.  相似文献   

13.
14.
Two isomorphous 3D metal-organic frameworks, {[Cu2(BPnDC)2(bpy)].8 DMF.6 H2O}n (1) and {[Zn2(BPnDC)2(dabco)].13 DMF.3 H2O}n (2), have been prepared by the solvothermal reactions of benzophenone 4,4'-dicarboxylic acid (H2BPnDC) with Cu(NO3)(2).2.5 H2O and 4,4'-bipyridine (bpy), and with Zn(NO3)(2).6 H2O and 4-diazabicyclo[2.2.2]octane (dabco), respectively. Compounds 1 and 2 are composed of paddle-wheel {M2(O2CR)4} cluster units, and they generate 2D channels with two different large pores (effective size of larger pore: 18.2 A for 1, 11.4 A for 2). The framework structure of desolvated solid, [Cu2(BPnDC)2(bpy)]n (SNU-6; SNU=Seoul National University), is the same as that of 1, as evidenced by powder X-ray diffraction patterns. SNU-6 exhibits high permanent porosity (1.05 cm3 g(-1)) with high Langmuir surface area (2910 m2 g(-1)). It shows high H2 gas storage capacity (1.68 wt % at 77 K and 1 atm; 4.87 wt % (excess) and 10.0 wt % (total) at 77 K and 70 bar) with high isosteric heat (7.74 kJ mol(-1)) of H2 adsorption as well as high CO2 adsorption capability (113.8 wt % at 195 K and 1 atm). Compound 2 undergoes a single-crystal-to-single-crystal transformation on guest exchange with n-hexane to provide {[Zn2(BPnDC)2(dabco)].6 (n-hexane).3 H2O}n (2hexane). The transformation involves dynamic motion of the molecular components in the crystal, mainly a bending motion of the square planes of the paddle-wheel units resulting from rotational rearrangement of phenyl rings and carboxylate planes of BPnDC2-.  相似文献   

15.
16.
In this paper, we report two metal-organic frameworks [Co3(ndc)3(bipyen)(1.5)]H2O (1) and [Co2(ndc)2bipyen)]C6H6.H2O (2) (bipyen=trans-1,2-bis(4-pyridyl)ethylene, H2ndc=2,6-naphthalenedicarboxylic acid). These compounds were both synthesized from identical hydrothermal reaction conditions except that benzene was added to the reaction for 2. Crystal structures show that the two compounds have triply interpenetrated three-dimensional frameworks and these frameworks have the same primary structure of a two-dimensional network of interconnected [Co2(O2CR)(4/2)] (R=naphthalene group) paddle-wheels and bridging bipyen ligands. Both compounds have guest water molecules and, in addition, 2 has guest benzene molecules. Structural transformations of the host accompanied guest removal, which can be monitored by powder X-ray diffraction. N2 adsorption data of 2 show that there are two different types of pores corresponding to the benzene and water pores. Upon exposure to vapors of several organic molecules, the heat-treated sample of 2 adsorbs benzene and cyclohexene, but does not adsorb toluene, (o-, m-, and p-)xylenes, cycloheptatriene, or cyclohexane.  相似文献   

17.
18.
We present an investigation on the influence of benzoic acid, acetic acid, and water on the syntheses of the Zr-based metal-organic frameworks Zr-bdc (UiO-66), Zr-bdc-NH(2) (UiO-66-NH(2)), Zr-bpdc (UiO-67), and Zr-tpdc-NH(2) (UiO-68-NH(2)) (H(2) bdc: terephthalic acid, H(2) bpdc: biphenyl-4,4'-dicarboxylic acid, H(2) tpdc: terphenyl-4,4'-dicarboxylic acid). By varying the amount of benzoic or acetic acid, the synthesis of Zr-bdc can be modulated. With increasing concentration of the modulator, the products change from intergrown to individual crystals, the size of which can be tuned. Addition of benzoic acid also affects the size and morphology of Zr-bpdc and, additionally, makes the synthesis of Zr-bpdc highly reproducible. The control of crystal and particle size is proven by powder XRD, SEM and dynamic light scattering (DLS) measurements. Thermogravimetric analysis (TGA) and Ar sorption experiments show that the materials from modulated syntheses can be activated and that they exhibit high specific surface areas. Water proved to be essential for the formation of well-ordered Zr-bdc-NH(2) . Zr-tpdc-NH(2), a material with a structure analogous to that of Zr-bdc and Zr-bpdc, but with the longer, functionalized linker 2'-amino-1,1':4',1'-terphenyl-4,4'-dicarboxylic acid, was obtained as single crystals. This allowed the first single-crystal structural analysis of a Zr-based metal-organic framework.  相似文献   

19.
20.
A new singly charged pyridinium axle was prepared and combined with disulfonated dibenzo[24]crown-8 ether to form a [2]pseudorotaxane. The reaction of this new, anionic ligand with Zn(II) ions, under various crystallization conditions, resulted in the formation of three metal-organic rotaxane framework (MORF) solids; a one-periodic ML coordination polymer and two, two-periodic ML(2) square grid frameworks. The layers of square grids can be pillared to create full three-periodic MORF structures, which have completely neutral frameworks and are porous. These three-periodic materials represent the first examples of neutral porous MOFs in which one (or more) of the linkers is a mechanically interlocked molecule (MIM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号