首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New pyrazolo[1,5-a]quinazoline-3-carbonitriles 4a,b were obtained via cyclocondensation of 5-amino-3-cyanomethyl-1H-pyrazole-4-carbonitrile (1) with enaminones of 1,3-cyclohexanedione derivatives 2a,b in refluxing glacial acetic acid. Condensation of compounds 4a,b with various aromatic aldehydes furnished the corresponding arylidene derivatives 6a–j. On the other hand, condensation of 4a,b with o-hydroxybenzaldehydes yielded the polyheterocyclic compounds 10a–h. Coupling of compounds 4a,b with aryldiazonium chlorides led to formation of 2-arylhydrazono derivatives 12a–h. Also, reaction of compounds 4a,b with phenyl isothiocyanate, followed by addition of ethyl chloroacetate and chloroacetonitrile, afforded the polyheterocyclic compounds based on pyrazolo[1,5-a]quinazoline core. The reaction of compounds 4a,b with phenyl isothiocyanate and elemental sulfur gave the thiazole-2-thione derivatives 25a,b. The reaction of enamines of compounds 4a,b with each of hydrazine hydrate and guanidine hydrochloride afforded pyrazolo[4″,3″:5′,6′]pyrido[4′,3′:3,4]pyrazolo[1,5-a]quinazolin-8-ones 30a,b and pyrimido[5″,4″:5′,6′]pyrido[4′,3′:3,4]pyrazolo[1,5-a]quinazolin-9(10H)-ones 33a,b, respectively. The structures of all the newly synthesized compounds were elucidated by elemental analyses and spectral data. The plausible mechanisms have been postulated to account for their formation.  相似文献   

2.
Several new heterocyclic compounds such as 7‐substituted pyrazolo[1,5‐a ]pyrimidine ( 5a–e ) derivatives have been synthesized by the reactions of the versatile unreported sodium 3‐(4‐methyl‐2‐(4‐methylphenylsulfonamido)thiazol‐5‐yl)‐3‐oxoprop‐1‐en‐1‐olate (2) with amino heterocyclic ( 3a–e ) derivatives. Reaction of (2) with hydrazonyl halide ( 7a–d ) and hydroximoyl chloride ( 11a,b ) derivatives followed by reaction with hydrazine hydrate afforded pyrazolo[3,4‐d ]pyridazine and isoxazolo[3,4‐d ]pyridazine derivatives, respectively incorporating a thiazole moiety have been described. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis.  相似文献   

3.
In this communication, a simple and straightforward procedure for the heterocyclization of 1H‐4,5‐dihydro‐3‐(4‐haloaryl)‐5‐substituted phenylpyrazoles (4) with 1‐bromo‐3‐chloropropane and 2,3‐dibromo‐1‐(4‐fluoro‐3‐methylphenyl)‐3‐phe‐ nylpropanone affording 2,3,4,8,9‐pentahydro‐7‐(4‐haloaryl)pyrazolo[5,1‐e]benzo[1,5] oxazocines 5 and regioselective synthesis of 2,3(erythro),7,8‐tetrahydro‐2‐ aryl‐3‐(4‐fluoro‐3‐methylbenzoyl)‐6‐(4‐halophenyl)pyrazolo[5,1‐d]benzo[1,4]oxa‐ zepines 6, respectively, via solid–liquid PTC is reported. All the synthesized compounds have been characterized on the basis of their spectral studies (IR, PMR, and MS) and analytical data.  相似文献   

4.
Abstract

An efficient protocol for the stereoselective synthesis of pyrazolo[5,1-b]thiazole-3-carboxylate tethered β-lactam conjugates 8a–j from novel pyrazolo [5,1-b]thiazole-3-carboxylate substituted Schiff’s bases 6a–f is reported here. The reaction between various ketene precursors and novel Schiff’s bases 6a–f afforded exclusive formation of trans-β-lactams 8a–j. The substrate scope of this approach was investigated extensively by varying different groups (R, Z). All the novel compounds were characterized using various spectroscopic techniques, such as FT-IR, 1H NMR, 13C NMR, elemental analysis, 13C NMR (DEPT-135), and mass spectrometry in representative cases. Single crystal X-ray crystallographic study of trans-ethyl 7-(1-(4-methoxyphenyl)-4-oxo-3-phenoxyazetidin-2-yl)-6-methyl-2-(methylthio)pyrazolo[5,1-b]thiazole-3-carboxylate 8a has confirmed the molecular structure and the stereochemical outcome. To the best of our knowledge, the synthesis of such types of Schiff’s bases and β-lactam conjugates has not been reported so far.  相似文献   

5.
A novel series of pyrazolo[1,5-a]pyrimidines 14a–j and pyrazolo[1,5-a]quinazolines 18a, b were synthesized via condensation of 5-amino-1H-pyrazoles 10a, b with 3-(dimethylamino)-1-aryl-prop-2-en-1-ones 11a–e and 2-((dimethylamino)methylene)-5,5-dimethylcyclohexane-1,3-dione (15), respectively, in glacial acetic acid. Finally, treatment of 10a, b with sodium nitrite (NaNO2) afforded pyrazolo[3,4-d]triazines 20a, b. Structures of compounds were confirmed by their spectral data. These compounds were screened for their in vitro cytotoxic activities against human cancer cell lines (HepG-2 and MCF-7) using 3-[4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The results reveal that, the compounds 14b and 14h were the most potent in comparison with doxorubicin. The structure–activity relationship was discussed.  相似文献   

6.
A novel, simple, and efficient synthetic methodology for the synthesis of hitherto unreported tetracyclic 10-amino-6,9-disubstituted-[1,2,4]triazino[4′,3′:1,5]pyrazolo[4,3-c]quinolines, in one step, has been developed by coupling of various active methylene compounds with diazotized heterocyclic amines. Reacting 2,4-dichloroquinoline-3-carbonitrile (1) with cyanoacetic acid hydrazide (2) in the presence of triethylamine in refluxing MeOH gave the unexpected 3-amino-4-chloro-1H-pyrazolo[4,3-c]quinoline (4), instead of the desired tetracyclic ring system 3 (Scheme 1). Refluxing 4 with excess of cyclic secondary amines 5a–c in boiling dimethylformamide yielded the corresponding 4-amino-pyrazolo[4,3-c]quinolines 6a–c. Diazotization of compounds 4 and 6a–c with sodium nitrite and concentrated HCl at ?5?°C gave the corresponding diazonium salts 17a–d, which were then subjected to couple with different active methylene nitriles, namely, 2-cyanothioacetamide (12), ethyl cyanoacetate (13), malononitrile (14), 2-cyanoacetamide (15), and 2-cyano-N-phenylacetamide (16), in aqueous ethanol containing sodium acetate as a buffer solution. The coupling reaction of diazonium salts 17 with 12, 13, and 14 leading to the novel perianellated tetracyclic ring system 10-amino-6,9-disubstituted-[1,2,4]triazino[4′,3′:1,5]pyrazolo[4,3-c]quinolines 19, 23, and 27, respectively, in one step, is described for the first time. On the other hand, coupling reaction of diazonium salt 17a with both 15 and 16 yielded the previously unknown tetracyclic 10-amino-6-chloro-[1,2,4]triazino[4′,3′:1,5]pyrazolo[4,3-c]quinoline-9-carboxamides 28a and 28b, respectively (Scheme 6). No chromatographic techniques have been used for the purification of the products. The structures of all the newly synthesized compounds were unambiguously confirmed by spectroscopic and analytical techniques.  相似文献   

7.
2‐Benzyl‐ and 2‐aryloxymethyl‐3‐amino‐1‐phenyl‐pyrazolo[3,4‐d]pyrimidine‐4‐ones 5a–f have been synthesized by reacting the corresponding arylacetylamino derivatives 3a–f with hydrazine hydrate. Thionation of compounds 5d–f by action of P2S5 in pyridine yielded 2‐aryloxy‐methyl‐3‐amino‐1‐pheny‐lpyrazolo[3,4‐d]pyrimidin‐4‐thions 6a–c . 2,5‐Diphenyl‐2,3‐dihydro‐1H‐pyrazolo[5′,1′:4:5]pyrazolo[3,4‐d]pyrimidine‐8‐one ( 8 ) was also obtained via reaction of ethyl‐2‐cinnamoylamino‐1‐phenyl‐pyrazole‐4‐car‐boxylate ( 7 ) with hydrazine hydrate. The prepared compounds were screened in vitro for their antimicrobial activity. Some of the tested compounds were found to be active at 100 μg/ml compared with reference compounds (Ampicillin and Trivid) as antibacterial agents and claforan as antifungal agent. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:530–534, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10187  相似文献   

8.
利用3-甲硫基-4-乙氧羰基-5-氨基-1H-吡唑分别与甲基/芳基烯胺酮反应, 合成了8种新的化合物2-甲硫基-7-取代-3-吡唑并[1,5-a]嘧啶甲酸乙酯(3a3g)和2-甲硫基-5-甲基-3-吡唑并[1,5-a]嘧啶甲酸乙酯(4a). 化合物的结构均经元素分析, IR, 1H NMR, MS所证实, 异构体3a4a的结构进一步由13C NMR, HMQC和HMBC确认. 同时, 探讨了区域选择性合成吡唑并[1,5-a]嘧啶类化合物可能的反应机理, 并对部分化合物杀菌活性进行了测试.  相似文献   

9.
5‐Hydrazineyl‐3‐methyl‐1H‐pyrazole ( 1 ) was used as a starting material for the synthesis of novel pyrazolo[3,4‐c][1,2]diazepine derivatives 3 , 4 , and 6a,b by its reaction with acetylacetone, ethyl acetoacetate, and isatylidene derivatives 5a,b , respectively. Also, pyrazolo[3,4‐c][1,2]diazepine derivative 11 was synthesized via multicomponent reaction of 1 , benzaldehyde, and malononitrile. Moreover, compound 1 was used for synthesis novel pyrazolo[3,4‐c]pyrazole derivative 7 by its reaction with isatin. In addition, pyrazolo[3,4‐c]pyrazole derivatives 18a–c were synthesized by treatment of 2‐cyano‐N′‐(3‐methyl‐1H‐pyrazol‐5‐yl)acetohydrazide ( 13 ) with aromatic aldehydes 16a–c . The newly synthesized compounds were valeted by means of analytical and spectral data. All newly synthesized compounds were screened for their antioxidant activities. Compounds 3 , 13 , 18b , and 18c showed higher radical‐scavenging activities.  相似文献   

10.
Novel alkyl substituted 3-(4-benzoyl-1,5-diphenyl-2,3-dihydro-1H-pyrazol-3-yl)-3-oxo-2-(triphenylphosphoranylidene) propanoates (3) were synthesized from 4-benzoyl-1,5-diphenyl-1H-pyrazole-3-carbonylchloride (1) and alkyl (triphenylphosphoranylidene) acetates (2a–b). The synthesized compounds were characterized by elemental analysis, spectroscopic studies (3a–b), and single crystal X-ray diffraction (3a). The mechanism of the reaction between (1) and (2a) was studied by AM1, and the geometrical parameters of the studied molecules were also carried out in B3LYP methods with the standard 6–31G (d,p) basis set. NBO analysis were studied for 1 and 2a B3LYP methods with the standard 6–31G (d,p) basis set.  相似文献   

11.

Nicotinic acid esters 3a–c were prepared by the reaction of pyridine-2(1H)-thione derivative 1 with α-halo-reagents 2a–c. Compounds 3a–c underwent cyclization to the corresponding thieno[2, 3-b]pyridines 4a–c via boiling in ethanol/piperidine solution. Compounds 4a–c condensed with dimethylformamide-dimethylacetal (DMF-DMA) to afford 3-{[(N,N-dimethylamino)methylene]amino}thieno[2, 3-b]- pyridine derivatives 6a–c. Moreover, compounds 4a–c and 6a–c reacted with different reagents and afforded the pyrido[3′,2′:4, 5]thieno[3, 2-d]pyrimidine derivatives 10a–d, 11a–c, 12a,b, 14a,b, 17, and 19. In addition, pyrazolo[3, 4-b]pyridine derivative 20 (formed via the reaction of 1 with hydrazine hydrate) reacted with ethylisothiocyanate yielded the thiourea derivative 21. Compound 21 reacted with α-halocarbonyl compounds to give the 3-[(3H-thiazol-2-ylidene)amino]-1H-pyrazolo[3, 4-b]pyridine derivatives 23a–c, 25, and 27a,b.  相似文献   

12.
6-aminopyrazolo[3,4-b]pyridine-5-carbonitrile (2) was used as a precursor for the synthesis of a variety of pyrazolo[3,4-b][1,8]naphthyridines (3, 4) and pentaazacyclopenta[b]naphthalenes (5–10, 13, 14) via the initial addition to either the cyano or amino group followed by cyclization. Also, a series of heptaazadicyclopenta[a,g]naphthalenes (15–17) and heptaazacyclopenta[b]phenanthrenes (18, 19) were obtained via the interaction of 4-(dibenzothiophen-2-yl)-1,5-dihydro-5-imino-3-methyl-1-phenyl-1,2,6,8,9-pentaazacyclopenta[b]naphthalen-6-ylamine (14) with different reagents. The structures of the synthesized compounds were established by elemental and spectral analyses.  相似文献   

13.
Abstract

A novel β -enaminonitrile of 1-(6-p-tolyl-pyridazin-3-yl)-pyrazole derivative 2 was formed using (6-p-tolyl-pyridazin-3-yl)-hydrazine ( 1 ) and 2-ethoxymethylenemalononitrile. The β-enaminonitrile derivative 2 was in turn used as a precursor for the preparation of pyrazoles ( 4 , 6 ), pyrazolo[3, 4-d]-pyrimidines ( 3 , 7–12 ) and pyrazolo[4, 3-e][1,2,4]triazolo[4,3-c]pyrimidine ( 13 ). Also, N- and S-acyclic nucleosides 14 and 15 were prepared. Some of the prepared products showed potent antimicrobial activity.  相似文献   

14.
Pyridine-2(1H)-thione 5 was synthesized from the reaction of 3-[3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]-1-phenylpropenone (3) and cynothioacetamide (4). Compound 5 reacted with halogented compounds 6a–e to give 2-S-alkylpyridine derivatives 7a–e, which could be in turn cyclized into the corresponding thieno[2,3-b]-pyridine derivatives 8a–e. Compound 8a reacted with hydrazine hydrate to give 9. The latter compound reacted with acetic anhydride (10a), formic acid (10b), acetic acid, ethyl acetoacetate, and pentane-2,4-dione to give the corresponding pyrido[3′,2′:4,5]thieno-[3,2-d]pyrimidine 13a,b, pyrazolo[3′,4′:4,5]thieno[3,2-d]pyridine 14 and thieno[2,3-b]-pyridine derivatives 18 and 20, respectively. Alternatively, 8c reacted with 10a,b and nitrous acid to afford the corresponding pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine 24a,b and pyrido[3′,2′:4,5]thieno[3,2-d][1,2,3]triazine 26 derivatives, respectively. Finally compound 5 reacted with methyl iodide to give 2-methylthiopyridine derivative 27, which could be reacted with hydrazine hydrate to yield the corresponding pyrazolo[3,4-b]-pyridine derivative 29.  相似文献   

15.
The imidazo[4,5-d]-1,2,3-triazine and pyrazolo[3,4-d]-1,2,3-triazine analogues of the potent anticonvul-sant purine, BW 78U79 (9-(2-fluorobenzyl)-6-methylamino-9H-purine, 1 ), were synthesized and tested for anticonvulsant activity. The imidazo[4,5-d]-1,2,3-triazines 11–13 were prepared in four steps from 5-aminoimidazole-4-carboxamide (2) and the pyrazolo[3,4-d]-1,2,3-triazines 18–21 were synthesized starting with 5-amino-1-(2-fluorobenzyl)pyrazole-4-carbonitrile (14) . The intermediate 1,2,3-triazin-4-ones 6 and 16 were converted to the 4-substituted targets via the 4-(4-dimethylaminopyridinium) salts 10 and 17 . Imidazotriazine 11 had potent anticonvulsant activity against maximal electroshock-induced seizures, but its propensity to cause emesis precluded further development.  相似文献   

16.
A series of novel 6-functionalized-5-amino-3-methyl-1-phenyl-1H-furo[3,2-e]pyrazolo[3,4-b]pyrazines (4a–c) was synthesized by the reaction of 3-methyl-6-oxo-1-phenyl-6,7-dihydro-1H-pyrazolo[3,4-b]pyrazine-5-carbonitrile (2) with α-halocarbonyl compounds such as: diethyl 2-bromomalonate, phenacyl bromide and chloroacetone. Cyclocondensation of the amino benzoyl 4b with diethyl malonate yielded the oxopyridine carboxylate derivative 5. Also, the starting intermediate amino ester compound 4a was allowed to react with ethanol amine to afford the hydroxyethyl caboxamide derivative 6. Furthermore, hydrazinolysis of the amino ester 4a afforded the corresponding amino carbohydrazide 7 which was used as a versatile precursor for synthesis of other heterocyclic compounds attached or fused to the furopyrazolopyrazine moiety. The chemical structures of the newly synthesized compounds were confirmed on the basis of elemental and spectral analyses containing FT-IR, 1H NMR, 13C NMR, and mass spectrometry hoping these molecules should allow us to investigate their pharmacological activities in the future study.  相似文献   

17.
A series of new 2-{4-oxo-2-[(4-oxothiazolidin-2-ylidene)-hydrazono]-thiazolidin-5-yl}-N-arylacetamides ( 4a–e ), 5-(2-oxo-2-aryl-ethyl)-2-[(4-oxothiazolidin-2-ylidene)-hydrazono]-thiazolidine-4-ones ( 5a–d ), 2-(4-oxo-2-[(2-oxothiazolidin-4-ylidene)-hydrazono]-thiazolidin-5-yl)-N-arylacetamides ( 7a–e ), and 5-(2-oxo-2-aryl-ethyl)-2-[(2-oxothiazolidin-4-ylidene)-hydrazono]-thiazolidine-4-ones ( 8a–d ) have been synthesized starting from 2-thioxothiazolidin-4-one and 4-thioxothiazolidin-2-one through a multistep reaction sequence. 2-Thioxothiazolidin-4-one was alkylated via the intermediate formation of the triethylammonium salt 1 by ethyl chloroacetate. Compound 2 and 4-thioxothiazolidin-2-one reacted with thiosemicarbazides to give the 1-(4-thiazolidinone-2-ylidene)-4-R-thiosemicarbazones ( 3a,b ) and 1-(2-thiazolidinone-4-ylidene)thiosemicarbazones ( 6a,b ), respectively. Following [2+3]-cyclization of thiazolidinone-substituted thiosemicarbazones ( 3a,b and 6a,b) with N-arylmaleimides and aroylacrylic acids as equivalents of dielectrophilic synthon [C2]2 +, novel non-fused bicyclic thiazolidinones ( 4a–e, 5a–d, 7a–e, 8a–d ) were synthesized. The structures of the new compounds ( 4a–e, 5a–d, 7a–e, 8a–d ) were established on the basis of their elemental analysis and 1H NMR and mass spectral data. Eight of the synthesized compounds were tested, and three of them displayed different levels of antitumor activity. The most efficient antitumor agent—2-{4-oxo-3-furylmethyl-2-[(4-oxothiazolidin-2-ylidene)-hydrazono]-thiazolidin-5-yl}-N-4-chlorophenylacetamide ( 4d ) was found to be active against leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate, and breast cancer cell lines with mean lgGI50 and lgTGI values of –5.35 and –4.78, respectively.  相似文献   

18.
Two novel ferrocenylphenyl-containing amides have been synthesized by reaction of ferrocenylbencarboxylchloride and 1, 2-di-(o_aminophenoxy)ethane. A single crystal X-ray analysis shows that compound 3 crystallizes in the triclinic system, space group P-1, and compound 4 crystallizes in orthorhombic system, space group Pca21. There are intramolecular H-bonds in both the compounds, two H-bonds in compound 3 and one in compound 4. The dihedral angels of Cp-ring and phenyl ring range from 3.8° to 20.8°. Translated from Chemical Research and Application, 2006, 18(2) (in Chinese)  相似文献   

19.
A series of some fused heterocycles originated from pyrazolopyrimidines were synthesized using 4‐amino1‐methyl‐3‐propyl‐1H‐pyrazole‐5‐carboxamide as a starting material. The nucleophilic substitution reactions with different amino acids followed by cyclization and Suzuki–Miyaura cross‐coupling reactions with different aryl boronic acids of 7‐chloro‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐propyl‐1H‐pyrazolo[4,3‐d]pyrimidine were performed. Also, the oxidative cyclization reactions of 1‐(5‐(4‐chlorophenyl)‐1‐methyl‐3‐propyl‐1H‐pyrazolo[4,3‐d]pyrimidin‐7‐yl)hydrazine with different aldehydes in the presence of diacetoxy iodobenzene are described. All the synthesized compounds were characterized by analytical and spectroscopic methods.  相似文献   

20.
Pyrazolo[4,3‐d]pyrimidines, pyrazolo[4,3‐d]triazolino[4,3‐a]pyrimidines, 3‐(2‐thiazolyl)thiophenes, thiazolo[3,2‐a]pyridine and pyrazolo[1,5‐a]pyrimidines were synthesized from 2‐[4‐(3‐oxobenzo[f]‐2H‐chromen‐2‐yl)‐1,3‐thiazol‐2‐yl]ethanenitrile. The newly synthesized compounds were elucidated by elemental analysis, spectral data, chemical transformation and alternative synthesis route whenever possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号