首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Synthetic single crystals of chromium-and lithium-doped forsterite, namely, (Cr,Li): Mg2SiO4, are studied using electron paramagnetic resonance spectroscopy. It is revealed that, apart from the known centers Cr3+(M1) and Cr3+(M2) (with local symmetries Ci and Cs, respectively), these crystals involve two new types of centers with C1 symmetry, namely, Cr3+(M1)′ and Cr3+(M2)′ centers. The standard parameters D and E in a zero magnetic field [zero-field splitting (ZFS) parameters expressed in GHz] and principal components of the g tensor are determined as follows: D=31.35, E=8.28, and g=(1.9797, 1.9801, 1.9759) for Cr3+(M1)′ centers and D=15.171, E=2.283, and g=(1.9747, 1.9769, 1.9710) for Cr3+(M2)′ centers. It is found that the lowsymmetric effect of misalignment of the principal axes of the ZFS and g tensors most clearly manifests itself (i.e., its magnitude reaches 19°) in the case of Cr3+(M2)′ centers. The structural models Cr3+(M1)-Li+(M2) and Cr3+(M2)-Li+(M1) are proposed for the Cr3+(M1)′ and Cr3+(M2)′ centers, respectively. The concentrations of both centers are determined. It is demonstrated that, upon the formation of Cr3+-Li+ ion pairs, the M1 position for chromium appears to be two times more preferable than the M2 position. Reasoning from the results obtained, the R1 line (the 2E4A2 transition) observed in the luminescence spectra of (Cr,Li): Mg2SiO4 crystals in the vicinity of 699.6 nm is assigned to the Cr3+(M1)′ center.  相似文献   

2.
Two-dimensional systems of C20 fullerenes connected to each other by strong covalent bonds have been investigated. Several isomers differing in the type of intercluster bonds have been revealed. The lifetimes τ of the (C20) M × M complexes with M = 2 and 3 at T = 1800–3300 K have been directly calculated using the molecular dynamics method. It has been shown that these complexes lose their periodic cluster structure due usually to the coalescence of two or several neighboring C20 fullerenes. The activation energy of this process determined by analyzing the τ(T) dependence appears to be E a ≈ 2.5 eV in agreement with the calculations of the heights of the potential barriers preventing the coalescence. At high temperatures T > 2400 K, the decay of C20 fullerenes entering into the complex is possible.  相似文献   

3.
The time-of-flight technique is used to measure the ratios R(E, E n )=N(E, E n )/NCf(E) of the normalized (to unity) spectra N(E, E n ) of neutrons accompanying the neutron-induced fission of 238U at primary-neutron energies of E n =6.0 and 7.0 MeV to the spectrum NCf(E) neutrons from the spontaneous fission of 252Cf. These experimental data and the results of their analysis are discussed together with data that were previously obtained for the neutron-induced fission of 238U at the primary energies of E n =2.9, 5.0, 13.2, 14.7, 16.0, and 17.7 MeV.  相似文献   

4.
The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 (T) = b2(F) + b2(L) and P 2 0 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 (T) and P 2 0 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).  相似文献   

5.
The relaxation electronic phenomena occurring in TlGa0.99Fe0.01Se2 single crystals in an external dc electric field are investigated. It is established that these phenomena are caused by electric charges accumulated in the single crystals. The charge relaxation at different electric field strengths and temperatures, the hysteresis of the current-voltage characteristic, and the electric charge accumulated in the TlGa0.99Fe0.01Se2 single crystals are consistent with the relay-race mechanism of transfer of a charge generated at deep-lying energy levels in the band gap due to the injection of charge carriers from the electric contact into the crystal. The parameters characterizing the electronic phenomena observed in the TlGa0.99Fe0.01Se2 single crystals are determined to be as follows: the effective mobility of charge carriers transferred by deep-lying centers μf=5.6×10?2 cm2/(V s) at 300 K and the activation energy of charge transfer ΔE=0.54 eV, the contact capacitance of the sample C c =5×10?8 F, the localization length of charge carriers in the crystal d c =1.17×10?6 cm, the electric charge time constant of the contact τ=15 s, the time a charge carrier takes to travel through the sample t t =1.8×10?3 s, and the activation energy of traps responsible for charge relaxation ΔE σ = ΔE Q = 0.58 eV.  相似文献   

6.
The evolution of optical absorption in a two-dimensional antiferromagnet is investigated in the range of the transition 6A1g4A1g, 4E g (4G) observed in manganese ions in an external magnetic field inducing noncollinearity of the magnetic structure. It is revealed that hot and cold satellites of the exciton-magnon bands appear in the optical absorption spectrum and then increase in intensity. The shapes of the magnon satellite bands corresponding to a two-dimensional magnetic structure are calculated. It is demonstrated that magnons at the inner points of the Brillouin zone appreciably contribute to the absorption. The zero-point magnetic oscillations play a decisive role in the absorption associated with the magnon decay at low temperatures.  相似文献   

7.
The electron spin resonance has been measured for the first time both in the paramagnetic phase of the metallic GdB6 antiferromagnet (TN = 15.5K) and in the antiferromagnetic state (T < TN). In the paramagnetic phase below T* ~ 70 K, the material is found to exhibit a pronounced increase in the resonance linewidth and a shift in the g-factor, which is proportional to the linewidth Δg(T) ~ ΔH(T). Such behavior is not characteristic of antiferromagnetic metals and seems to be due to the effects related to displacements of Gd3+ ions from the centrosymmetric positions in the boron cage. The transition to the antiferromagnetic phase is accompanied by an abrupt change in the position of resonance (from μ0H0 ≈ 1.9 T to μ0H0 ≈ 3.9 T at ν = 60 GHz), after which a smooth evolution of the spectrum occurs, resulting eventually in the formation of the spectrum consisting of four resonance lines. The magnetic field dependence of the frequency of the resonant modes ω0(H0) obtained in the range of 28–69 GHz is well interpreted within the model of ESR in an antiferromagnet with the easy anisotropy axis ω/γ = (H 0 2 +2HAHE)1/2, where HE is the exchange field and HA is the anisotropy field. This provides an estimate for the anisotropy field, HA ≈ 800 Oe. This value can result from the dipole?dipole interaction related to the mutual displacement of Gd3+ ions, which occurs at the antiferromagnetic transition.  相似文献   

8.
Long-time polarization relaxation in the temperature range where PBSN-6 single crystals reside in the relaxor state was studied. An analysis of the time dependence of the permittivity ε′(t) performed at measuring frequencies from 1 Hz to 1 kHz in weak electric fields E0 showed that the relaxation (or freezing) times derived by extrapolating relations of the type ε′(t) ~ log(t/t0) and ε′(t) ~ exp{?[ln(t/t0)]β} range from 108 to 1011 min and depend substantially on the bias voltage applied to the sample. A study of the pattern of the dielectric response in moderate and strong infralow-frequency fields revealed that, after a sample was maintained under a bias lower than the coercive force, it no longer exhibited the additional anomalies in the amplitude dependences of the effective loss tangent taneff(E0) than were observed in a thermally recuperated sample.  相似文献   

9.
Conversion coefficients for the E1 and M1 transitions in the 44Ti decay have been measured with high accuracy using the sum peak and multidimensional coincidence methods. The following values have been obtained: αK(E1) = 0.077 ± 0.003 and αK(M1) = 0.014 ± 0.001. A significant contribution of the penetration effects for the M1 transition has been shown. The penetration parameter λ is determined to be ?260 ± 30 has been determined.  相似文献   

10.
The optical spectra and the second-harmonic generation (SHG) are studied in a noncentrosymmetric GdFe3(BO3)4 magnet. In the region of weak absorption (α~20–400 cm?1) below ~3 eV, three absorption bands are distinguished, which can be unambiguously assigned to forbidden electronic transitions from the ground 6A1 state of the Fe3+ ion to its excited states 4T1(~1.4 eV), 4T2(~2 eV), and 4A1, 4E(~2.8 eV). Intense absorption begins in the region above 3 eV (α~2–4×105 cm?1), where two bands at ~4.0 and 4.8 eV are observed, which are caused by allowed electric dipole charge-transfer transitions. The spectral features of SHG in the 1.2–3.0-eV region are explained by a change in the SHG efficiency caused by a change in the phase mismatch. It is shown that in the weak absorption region, phase matching can be achieved for SHG.  相似文献   

11.
Full-electron calculations of the electronic structure of the TiSi2 compound in the structural modification C49 are performed using the augmented-plane-wave method. The total energy, the electronic band structure, and the density of states are calculated for an extended translational unit cell Ti4Si8, which is formed during the growth of a silicon nanowire on a p-Si substrate. Calculations are also carried out for two orthorhombic unit cells of the nonstoichiometric compositions Ti3Si9 and Ti5Si7. The energies of the interatomic bonds are determined to be E Si-Si = 1.8 eV, E Ti-Ti = 2.29 eV, and E Ti-Si = 4.47 eV. The dependence of the total energy of the unit cell E tot(V) on the unit cell volume V is obtained by optimizing the unit cell volume. The bulk modulus B 0 = 132 GPa is determined from the Murnaghan equation of state for solids and the dependence E tot (V). This value of the bulk modulus is used to estimate the activation energy for interstitial diffusion of silicon atoms Q i(Si) ≈ 0.8 eV.  相似文献   

12.
The polarized spectra of absorption and magnetic circular dichroism in a TmAl3(BO3)4 single crystal are studied in the region of 3 H 63 F 4, 3 H 63 F 3, and 3 H 63 F 2 electronic transitions in the Tm3+ ion. The structure of the spectra is interpreted qualitatively. It is shown that the magnetic circular dichroism of the 3 H 63 F 4 transition is determined by the contribution from the splitting of the ground state, whereas the magnetic circular dichroism of the 3 H 63 F 3 transition is governed by the contribution from the splitting of an excited state in a trigonal crystal field.  相似文献   

13.
The effect of heating of the electronic subsystem on the thermal stability of C60 and C20 fullerenes and a (C20)2 cluster molecule is investigated theoretically. It is demonstrated that the excitation of electrons to upper energy levels in accordance with the Fermi-Dirac distribution function does not lead to a substantial change in the activation energy E a for decay of the C20 fullerene. The stability of the C60 fullerene and the (C20)2 cluster molecule likewise does not change radically. However, the inclusion of corrections associated with the finite sizes of the heat bath leads to the activation energy E a which is in better agreement with the calculated height of the potential barrier preventing the cluster decay.  相似文献   

14.
(NH4)3ZrF7 single crystals were grown, and polarization-optical and x-ray diffraction studies were performed on powders and crystalline plates of various cuts over a wide temperature range. Phase transitions are revealed at temperatures T 1↑ = 280 K, T 2↑ = 279.6 K, T 3↑ = 260–265 K, and T 4↑ = 238 K on heating and at T 1↓ = 280 K, T 2↓ = 269–270 K, T 3↓ = 246 K, and T 4↓ = 235 K on cooling. The sequence of changes in symmetry is established to be as follows: O h 5 (Z = 4) ? D 2h 25 (Z = 2) ? C 2h 3 (Z = 2) ? C i 1 (Z = 108) ? monoclinic2(Z = 216).  相似文献   

15.
Thin films Cu2ZnSnS4 (up to 0.9 μm thick) with p-type conductivity and band gap Eg = 1.54 eV have been prepared by the spray pyrolysis of 0.1 M aqueous solutions of the salts CuCl2 · 2H2O, ZnCl2 · 2H2O, SnCl4 · 5H2O, and (NH2)2CS at a temperature TS = 290°C. The electrophysical properties of the films have been analyzed using the model for polycrystalline materials with electrically active grain boundaries. The energy and geometric parameters of the grain boundaries have been determined as follows: the height of the barriers is Eb ≈ 0.045–0.048 eV, and the thickness of the depletion region is δ ≈ 3.25 nm. The effective concentrations of charge carriers p0 = 3.16 × 1018 cm–3 and their mobilities in crystallites μp = 85 cm2/(V s) have been found using the technique for determining the kinetic parameters from the absorption spectra of thin films at a photon energy hν ≈ Eg. The density of states at grain boundaries Nt = 9.57 × 1011 cm–2 has been estimated.  相似文献   

16.
The first results of the study of optical absorption spectra of KTaO3: Er3+ crystals are presented. In the 350–660-nm region, lines are observed deriving from intraconfigurational electronic transitions from the 4 I 15/2 ground state to levels of the 4 F 9/2, 4 S 3/2, 2 H 11/2, 4 F 7/2, 4 F 5/2(4 F 3/2), 2 G 9/2, and 4 G 11/2 excited states of the Er3+ ions. A comprehensive study of transitions to the 4 F 9/2, 4 S 3/2, 2 H 11/2, and 4 F 7/2 levels at 77 K is carried out. The number of lines observed for the above transitions fits the theoretically possible number for ?-? electronic transitions in Er3+ ions in the cubic crystal field. In the case of a differently charged substituted ion, this situation occurs only under nonlocal impurity charge compensation. The energies of the excited state levels for the transitions under study are determined.  相似文献   

17.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

18.
The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.  相似文献   

19.
The absorption spectrum of thin films of a new compound, K2CdI4, was studied. It was established that this compound belongs to direct-bandgap dielectrics and that its low-frequency electronic and excitonic excitations are localized in CdI 4 2? structural blocks of the crystal lattice. It was found that, in M2CdI4 compounds (M = K, Rb, Cs), the bandgap width E g grows and the spin-orbit splitting of the valence band top decreases with increasing ionic radius of the alkali metal.  相似文献   

20.
The experimentally determined energies and rotational constants of the vibrational levels v = 0–20 of the Ion-Pair states Ω = 0+, Ω = 1 of the I2, Br2, IBr, and ICl molecules are modeled. The model used includes three diabatic states, which correlate to X+(3P, 1D) + Y(1S0). These states are coupled by the spin-orbit interaction, which is assumed to be independent of the internuclear distance. For IBr and ICl, as well as for the ungerade states of I2 and Br2, satisfactory results are obtained. The model is less applicable to the gerade states of I2 and Br2, which is possibly results from the retainment of the asymptotic J A J B coupling of the angular momenta at equilibrium internuclear distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号