首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the media flexibility of membraneless sodium percarbonate fuel cell (MLSPCFC) using acid/alkaline bipolar electrolyte in which the anode is in acidic media while the cathode is in alkaline media, or vice versa. Investigation of the cell operation is conducted by using formic acid as a fuel and sodium percarbonate as an oxidant for the first time under ‘acid–alkaline media’ configurations. The MLSPCFC architecture enables interchangeable operation with different media combinations. The experimental results indicate that operating under acid–alkaline media conditions significantly improves the fuel cell performance compared with all-acidic and all-alkaline conditions. The effects of flow rates and the concentrations of various species at both the anode and cathode on the cell performance are also investigated. It has been demonstrated that the laminar flow-based microfluidic membraneless fuel cell can reach a maximum power density of 25.62 mW cm?2 with a fuel mixture flow rate of 0.3 mL min?1 at room temperature.  相似文献   

2.
Development of a commercial solid-state fuel cell depends on identification of suitable catalytic electrodes to replace platinum. A three-electrode test cell for electrode evaluation is reported. The solid protonic electrolyte used was dodecamolybdophosphoric acid, H3Mo12PO40·29H2O, and a thin platinum wire inserted into the electrolyte served as the third electrode. Reproducibility and insensitivity to third-electrode position were demonstrated. The third electrode measures separately the anode and cathode interfacial resistances, thus providing a direct measure of the relative catalytic activity of a given test electrode. Application of the technique is illustrated.  相似文献   

3.
Urea combustion method was adopted to prepare precursor powder, MCeO3 doped with Zr (M is alkaline earth element, such as barium, strontium, and calcium). The precursor powder has typically perovskite structure after being calcined at 873 K. In 773 K∼1,273 K, BaCe0.425Zr0.475Y0.1O3 has the highest conductivity above 10−2 S cm−1 and good chemical stability, while the phase transition may exist in H2S atmosphere for the proton conductors. In the single fuel cell composed of MoS2-BaCe0.425Zr0.475Y0.1O3-σ-Ag with BaCe0.425Zr0.475Y0.1O3-σ as electrolyte, the best performance is obtained. The open circuit voltage of fuel cell is all about 0.72 V, the max power density, 1.55 mW cm−2. The performance drop is attributed to ohmic loss resulting from the separation of electrolyte and electrode, and improvement is required to bring out new anode materials compatible to the proton conductor, BaCe0.425Zr0.475Y0.1O3-σ, as electrolyte.  相似文献   

4.
We have fabricated a fuel cell based on a superprotonic conductor, a Tl3H(SO4)2 crystal, and have measured the electrical properties of this fuel cell. It is found that the open-circuit voltage in the fuel cell based on the Tl3H(SO4)2 crystal increases by supplying H2 fuel gas and typically becomes 0.83 V. Moreover, we have observed that the cell voltage decreases with increasing current density, as observed in fuel cells such as proton exchange membrane fuel cell, solid oxide fuel cell, etc. These results indicate that it is possible to use the Tl3H(SO4)2 crystal as the electrolyte of a solid acid fuel cell. In addition, we suggest that the selection of the electrode and the preparation of the very thin electrolyte are extremely important to achieve high-efficiency of power generation of this fuel cell.  相似文献   

5.
Solid oxide fuel cells directly convert the chemical energy of a fuel into electricity. To enhance the efficiency of the fuel cells, the thickness of the gastight solid electrolyte membranes should be as thin as possible. Y2O3-stabilised ZrO2 (YSZ) electrolyte films were prepared by reactive sputtering deposition using Zr/Y targets in Ar/O2 atmospheres. The films were 5 – 8 μm thin and were deposited onto anode substrates made of a NiO/YSZ composite. After deposition of a cathode with the composition La0.65Sr0.35MnO3 the electrochemical properties of such a fuel cell were tested under operating conditions at temperatures between 600 °C and 850 °C. Current-voltage curves were recorded and impedance measurements were performed to calculate apparent activation energies from the fitted resistance data. The conductivity of the YSZ films varied between 4.6·10−6 S/cm and 2.2·10−5 S/cm at 400 °C and the fuel cell gave a reasonable power density of 0.4 W/cm2 at 0.7 V and 790 °C using H2 with 3 % H2O as fuel gas. The gas compositions were varied to distinguish the electrochemical processes of the anode and cathode in the impedance spectra. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

6.
A layered perovskite GdBaCuFeO5+x (GBCuF) was developed as a cathode material for intermediate-temperature solid oxide fuel cells based on a proton-conducting electrolyte of stable BaZr0.1Ce0.7Y0.2O3?δ (BZCY). The X-ray diffraction results showed that GBCuF was chemically compatible with BZCY after co-fired at 1,000 °C for 10 h. The thermal expansion coefficient of GBCuF, which showed a reasonably reduced value (15.1?×?10?6 K?1), was much closer to that of BZCY than the cobalt-containing conductor. The button cells of Ni–BZCY/BZCY/GBCuF were fabricated and tested from 500 to 700 °C with humidified H2 (~3 % H2O) as a fuel and ambient oxygen as the oxidant. A high open-circuit potential of 1.04 V, maximum power density of 414 mW cm?2, and a low electrode polarization resistance of 0.21 Ω cm2 were achieved at 700 °C, with calculated activation energy (E a) of 128 kJ mol?1 for the GBCuF cathode. The experimental results indicated that the layered perovskite GBCuF is a good candidate for cathode material.  相似文献   

7.
Ce0.9Gd0.1O1.95 (GCO), is one of the potential candidate electrolytes for intermediate temperature Solid Oxide Fuel Cells (ITSOFC). GCO has high oxide ion conductivity in the intermediate temperature range (500 – 700 °C) compared to other Ce1−yGdyO2-2/y compositions and the Gd3+ ion is the most appropriate dopant material compared to other rare earth materials such as Sm3+, Y3+, Zr3+, etc. Our results show that the fuel cell H2/Pt/Ce0.9Gd0.1O1.95/Pt/O2 operated in the temperature range 500 – 700°C gives the maximum power densities 0.0049 W/cm2 at 500 °C and 0.0126 W/cm2 at 650 °C for cell voltages 0.6275 V and 0.6278 V, respectively, where the electrolyte was kept in 5% H2 (+ Argon) for 12 hours before use in the fuel cell. Maximum power densities are 0.0038 W/cm2 at 500 °C and 0.0270 W/cm2 at 650 °C for cell voltages 0.5986 and 0.5913 V, respectively, where the electrolyte was kept in 2 % O2 (+ Argon) for 12 hours before use in the fuel cell. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

8.
The present work represents the mesoporous carbon-supported Pt–Sn and Pt–Sn–Ce catalysts with different mass ratios have been prepared by co-impregnation reduction method. The prepared catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigation. The XRD patterns of prepared Pt/MC (100) Pt–Sn/MC (75:25), Pt–Ce/MC (75:25), and Pt–Sn–Ce/MC (75:20:05) catalysts showed that Pt metal was the predominant material in all the samples, with peaks attributed to the face-centered cubic (fcc) crystalline structures. Additionally changes in the lattice parameters observed for Pt suggest the incorporation of Sn into the Pt crystalling structure with the formation of an alloy mixture with the SnO2 phase. The TEM analysis designates that the prepared catalysts had similar particle morphology, and their particle sizes were 2–5 nm. The electrochemical studies showed that ternary catalyst shows best performance for oxidation of ethanol molecule at normal temperature. The enhanced ethanol oxidation activity for the ternary Pt–Sn–Ce catalyst is mainly attributed to the synergistic effect of bifunctional mechanism with electronic effect. Additionally, chemical nature of ceria affords oxygen-containing molecule to oxidize acetaldehyde to acetic acid. In this present context, 1 M ethanol was used as a fuel, 0.1 M sodium perborate was used as an oxidant, and 0.5 M sulfuric acid was used as an electrolyte. In mesoporous carbon-supported binary Pt–Sn and ternary Pt–Sn–Ce anode catalysts were effectively tested in a single membraneless fuel cell at normal temperature. The presence of Sn and Ce enhances the CO oxidation; they produced an oxygen-containing species to oxidize acetaldehyde to acetic acid.  相似文献   

9.
《Solid State Ionics》2006,177(26-32):2413-2416
NH4PO3–(NH4)2SiP4O13 composite, a potential electrolyte for intermediate temperature fuel cells that operated around 250 °C, was synthesized with a solid-state reaction method. Electromotive forces (emfs) as measured with hydrogen concentration cells showed that the composite was a pure proton conductor at hydrogen partial pressure from 102 to 105 Pa. Its proton transference numbers were determined to be 1.0 at 150 °C, 0.99 at 200 °C, and 0.99 at 250 °C. Fuel cells that used NH4PO3–(NH4)2SiP4O13 as electrolytes were also fabricated. Maximum power density was 6.6 mW/cm2 at 250 °C when dry hydrogen and dry oxygen were used as the fuel and oxidant, respectively. Improved cell performance is expected by increasing cathode activity, increasing the electrolyte density, and decreasing the electrolyte thickness.  相似文献   

10.
Vanadium (V) catalyzes perborate oxidation of substituted 5-oxo acid in acidic solution, being 1.6 order with respect to the oxidant, first order in the catalyst, inhibited by H+ and displays Michaelis–Menten kinetics on the reductant. In aqueous acetic acid solution, perborate generates hydrogen peroxide and the kinetic results reveal formation of oxodiperoxovanadium(V)-oxo acid complex. At high acidity, the ionic strength of the medium has little influence on the oxidation rates. But at low acidity, the rate increases with increasing ionic strength. The rate of oxidation increases with decreasing dielectric constant of the medium. Electron-releasing substituents in the aromatic ring accelerate the reaction rate and electron-withdrawing substituents retard the reaction. The order of reactivity among the studied 5-oxo acid is p-methoxy >> p-methyl > p-phenyl > -H > p-chloro > p-bromo > m-nitro. Activation parameters have been evaluated using Arrhenius and Eyring’s plots. A mechanism consistent with the observed kinetic data has been proposed and discussed. A suitable rate law has been derived based on the mechanism.  相似文献   

11.
X.C. Lu  J.H. Zhu  Z.H. Bi 《Solid State Ionics》2009,180(2-3):265-270
Composite materials of YSZ (yttria-stabilized zirconia) with various Ni–Fe alloys were synthesized and evaluated as the solid oxide fuel cell (SOFC) anode using a 200-µm thick YSZ electrolyte as support and YSZ +La0.8Sr0.2MnO3 (LSM) as cathode. The single cell with the YSZ + Ni0.75Fe0.25 anode exhibited the highest performance among all the investigated cells, e.g. a peak power density of 403, 337, 218 and 112 mW/cm2 was achieved with H2 fuel at 900, 850, 800 and 750 °C, respectively. The composite anode with the Ni0.75Fe0.25 alloy also had the lowest polarization resistance of 0.55 Ω·cm2 at 800 °C among all the alloy compositions, indicating that this specific alloy offered a better anode composition than pure Ni. The possible mechanism for the improved performance of Ni with the Fe alloying addition towards H2 oxidation was discussed.  相似文献   

12.
A novel system based on the indirect oxy-combustion of coal in a liquid Sb anode solid oxide fuel cell (SOFC) has been used to produce electricity for over 48?h. Pulverized anthracite was fed to the liquid-antimony-anode of the fuel cell, and a peak power density of 47?mW cm?2 was reached at 1023?K and 35?mW cm?2 at 973?K. The fuel cell was prepared using a porous stainless-steel tube as a support for an LSM cathode, antimony oxide (Sb2O3)/yittria stabilized zirconia (YSZ, Y0.08Z0.92O1.96) composite electrolyte (membrane), while liquid antimony acted as the anode. Liquid antimony/antimony oxide served as the intermediate medium for coal oxidation producing mainly carbon dioxide, which evolved as a separate gas stream. The fuel cell will facilitate carbon capture process, and simultaneously convert the chemical energy of coal directly to electricity. The experiment showed that while the fabricated electrolyte was porous, it became dense during the actual operation, preventing nitrogen leakage into the Sb/C side and producing reasonable open circuit voltage. Analysis of the experimental EIS data illustrates that the Ohmic resistance was the primary loss mechanism in the system. It further suggests approaches to improve the design. Continuous operation of this coal fueled oxy-combustion/fuel cell system achieved an overall efficiency of 28.2% despite of its tiny scale. Simple technologies can be employed to scale up this system at relatively low cost of fabrication and materials.  相似文献   

13.
《Solid State Ionics》1999,116(1-2):29-33
The chemical stability of Li2SO4 on the operation condition of a H2/O2 fuel cell has been investigated in this work. Thermodynamic calculation indicates Li2SO4 can react with H2 at high temperature. The H2/O2 fuel cell using Li2SO4–α-Al2O3 as electrolyte exhibits good performance, but the stability of performance is not good. XRD analysis indicates that Li2SO4 reacts with H2 at high temperature. Therefore, the Li2SO4-based proton conductors are not suitable for electrolytes for H2/O2 fuel cells.  相似文献   

14.
Polymer electrolyte membrane (PEM) fuel cells are susceptible to degradation due to the catalyst poisoning caused by CO present in the fuel above certain limits. Although the amount of CO in the fuel may be within the permissible limit, the fuel composition (% CO2, CH4, CO and H2O) and the operating conditions of the cell (level of gas humidification, cell temperature and pressure) can be such that the equilibrium CO content inside the cell may exceed the permissible limit leading to a degradation of the fuel cell performance. In this study, 50 cm2 active area PEM fuel cells were operated at 55–60 °C for periods up to 250 hours to study the effect of methane, carbon dioxide and water in the hydrogen fuel mix on the cell performance (stability of voltage and power output). Furthermore, the stability of fuel cells was also studied during operation of cells in a cyclic dead end / flow through configuration, both with and without the presence of carbon dioxide in the hydrogen stream. The presence of methane up to 10% in the hydrogen stream showed a negligible degradation in the cell performance. The presence of carbon dioxide in the hydrogen stream even at 1–2% level was found to degrade the cell performance. However, this degradation was found to disappear by bleeding only about 0.2% oxygen into the fuel stream.  相似文献   

15.
A direct carbon fuel cell offers a high efficiency alternative to traditional coal fired electrical power plants. In this paper, the electrochemical performance of electrolyte supported button cells with Gd2O3-doped CeO2 (CGO) electrolyte is reported over the temperature range 600 to 800 °C with solid carbon as a fuel and He/CO2 as the purge gases in the fuel chamber. The electrochemical characterisation of the cells was carried out by the Galvanostatic Current Interruption (GCI) technique and measuring V-I and P-I curves. Power densities over 50 mWcm-2 have been demonstrated using carbon black as the fuel. Results indicate that at low temperatures around 600 °C, the direct electrochemical oxidation of carbon takes place. However, at higher temperatures (800 °C) both direct electrochemical oxidation and the reverse Boudouard reaction take place leading to some loss in fuel cell thermodynamic efficiency and reduced fuel utilisation due to the in-situ production of CO. In order to avoid reverse Boudouard reaction whilst maximising performance, an operating temperature of around 700 °C appears optimal. Further, the electrochemical performance of fuel cells has been compared for graphite and carbon black fuels. It was found that graphitic carbon fuel is electrochemically less reactive than relatively amorphous carbon black fuel in the DCFC when tested under similar conditions.  相似文献   

16.
Synchrotron‐based X‐ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high‐temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro‐ and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40–100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation‐based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non‐operating fuel cell. The non‐destructive imaging methodology was verified by comparing image‐based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.  相似文献   

17.
Songlin Wang 《Ionics》2012,18(8):777-780
A cobalt-free Ba0.5Sr0.5Fe0.9Nb0.1O3??? (BSFNb) perovskite-type oxide was investigated as the cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) with Sm0.2Ce0.8O1.9 (SDC) electrolyte. XRD results showed that BSFNb cathode was chemically compatible with the electrolyte SDC up to 1,000?°C. The maximum output of anode-supported thin-film SOFC reached 503?mW?cm?2 at 650?°C when employing humidified H2 as fuel and static air as oxidizer. The electrode polarization resistance was low as 0.078????cm2 at 650?°C, and the activation energy of the electrode polarization resistance was 129.72?kJ?mol?1. The experimental results indicated that the cobalt-free BSFNb was a promising cathode candidate for IT-SOFCs.  相似文献   

18.
We have fabricated a fuel cell based on the DNA film (DNAFC) and examined its properties under various humidity conditions at room temperature. The open-circuit voltage of a DNAFC is generated by supplying H2 gas to the anode. The open-circuit voltage strongly depends on the humidity conditions, and in a DNA film, the optimum condition in which the open-circuit voltage attains a value as high as 0.55 V is achieved under the relative humidity condition of 55%. Furthermore, the cell voltage of the DNAFC decreases with an increase in current density, as observed in fuel cells such as proton exchange membrane fuel cell, solid oxide fuel cell, and several others. These results indicate that DNA film can be used as the fuel cell electrolyte under approximately 55% humidity condition.  相似文献   

19.
Uniform mixtures of fuel together with air can be supplied to both cathode and anode of fuel cells and generate power as proposed before. The necessary condition for this to happen is an asymmetry in the catalytic properties of the electrodes. A few experimental works have demonstrated this over the last 5 years and a basic theoretical analysis has been recently presented. We here report on I-V measurements done using mixtures of H2+O2+Ar as well as using mixture of CH4+O2+Ar and C2H4+O2+Ar. The solid electrolyte used is Y2O3 stabilized ZrO2. For some of the low temperature measurements Nafion 117 is used as the SE. This allows for a better understanding of the catalytic activity of the electrodes. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

20.
《Solid State Ionics》1987,23(3):203-209
The development of a reversible fuel and steam electrolysis cell based on an H3O+β/β″ -Al2O3 solid electrolyte is described. The unit has been operated between 100 and 300°C at one atmosphere steam pressure. The major limitations are discussed with reference to the solid electrolyte and the method of electrode preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号