首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A very selective method is described for the determination of doxorubicin in rat plasma. Doxorubicin is extracted from the plasma on a pretreated octadecyl silane column and eluted with phosphate buffer pH 2.6/methanol (25/75, v/v) containing sodium 1-heptanesulfonate as ion-pairing agent. The extraction procedure is suitable for samples which contain doxorubicin encapsulated in liposomes if Triton X-100 is added. A portion of the evaporated eluate is used for high-performance reversed-phase chromatography with the same eluent and a fluorescence detector. Daunorubicin is used as internal standard. Extraction of doxorubicin from plasma is quantitative. The calibration graph is linear for 0.2-100 μg l?1 doxorubicin with a limit of detection of 0.2 μg l?1 for 0.5 ml of plasma. The relative standard error of estimate of the calibration was typically 3%.  相似文献   

2.
Liposomes containing distearoylphosphatidylethanolamine with covalently linked polyethylene glycol of molecular weight 2,000 (DSPE-PEG2000) covering a range of 0–30 mol% were prepared by a mechanical dispersion or detergent-removal method. The effects of DSPE-PEG2000 on particle sizes and lamellarity of liposomes were investigated. The average diameters of vesicles prepared from both methods decreased when the concentration of DSPE-PEG2000 was increased. The decrease in vesicle size with increase in DSPE-PEG2000 was ascribed to the steric hindrance of strongly hydrated PEG. The significant decrease in the sizes of DSPE-PEG2000-containing EggPC vesicles prepared by the detergent-removal method could be explained by the postvesiculation size growth in the process of micelle–vesicle transition. For DMPC vesicles prepared by the detergent-removal method, electron micrographs showed that inclusion of DSPE-PEG2000 promoted vesicle formation. Based on the results of investigation of calcein entrapment efficiency, we concluded that the lamellarity of liposomes is reduced as PEG lipid concentration is increased. Fragmentation of multilamellar vesicles into smaller unilamellar vesicles occurred more readily when the liposome suspension was subjected to repetitive freeze-thawing. After five cycles of freezing and thawing, vesicles containing more than 0.5 mol% DSPE-PEG2000 were fragmented into unilamellar vesicles with diameters smaller than 300 nm.  相似文献   

3.
Liposome-templated supramolecular assembly of responsive alginate nanogels   总被引:1,自引:0,他引:1  
Nanosized gel particles (nanogels) are of interest for a variety of applications, including drug delivery and single-molecule encapsulation. Here, we employ the cores of nanoscale liposomes as reaction vessels to template the assembly of calcium alginate nanogels. For our experiments, a liposome formulation with a high bilayer melting temperature (Tm) is selected, and sodium alginate is encapsulated in the liposomal core. The liposomes are then placed in an aqueous buffer containing calcium chloride, and the temperature is raised up to Tm. This allows permeation of Ca2+ ions through the bilayer and into the core, whereupon these ions gel the encapsulated alginate. Subsequently, the lipid bilayer covering the gelled core is removed by the addition of a detergent. The resulting alginate nanogels have a size distribution consistent with that of the template liposomes (ca. 120-200 nm), as confirmed by transmission electron microscopy and light scattering. Nanogels of different average sizes can be synthesized by varying the template dimensions, and the gel size can be further tuned after synthesis by the addition of monovalent salt to the solution.  相似文献   

4.
The conformation of peptide and protein drugs in various microenvironments and the interaction with drug carriers such as liposomes are of considerable interest. In this study the influence of microenvironments such as pH, salt concentration, and surface charge on the secondary structure of a model protein, lysozyme, either in solution or entrapped in liposomes with various molar ratios of phosphatidylcholine (PC):cholesterol (Chol) was investigated. It was found that entrapment efficiency was more pronounced in negatively charged liposomes than in non-charged liposomes, which was independent of Chol content and pH of hydration medium. The occurrence of aggregation, decrease in zeta potential, and alteration of 31P NMR chemical shift of negatively charged lysozyme liposomes compared to blank liposomes suggested that the electrostatic interaction plays a major role in protein–lipid binding. Addition of sodium chloride could impair the neutralizing ability of positively charged lysozyme on negatively charged membrane via chloride counterion binding. Neither lysozyme in various buffer solutions with sodium chloride nor that entrapped in liposomes showed any significant change in their secondary structures. However, significant decrease in α-helical content of lysozyme in non-charged liposomes at higher pH and salt concentrations was discovered.  相似文献   

5.
A method for the preparation of liposome is introduced, which contains two experimental steps: (a) inverse micelles of lecithin are formed in water-in-oil system by sonication; (b) the micelles are spread on the water surface, passed Through the oil-water interface, and transformed into liposomes in the water phase. The main advantage of this method is that the inner aqueous solution encapsulated by liposomes could be different from their enviromental medium. The liposome size is less than 0.5 μm in diameter by atomic force microscope. Comparison of activities of urease with and without liposome encapsulation suggested that urease was well entraped into liposomes.  相似文献   

6.
Horseradish peroxidase (HRP) encapsulated in liposomes was directly detected by using luminol chemiluminescence (CL) with H2O2 without lysis of liposomes. At a low concentration of H2O2, the initial rate of HRP-catalyzed luminol CL in liposomes was slower than that of HRP-catalyzed luminol CL in a lipid-free bulk solution. The decrease in the initial rate of the CL reaction in liposomes was due to the membrane permeation of luminol and H2O2. At a high concentration of H2O2, the initial rate of the CL reaction in liposomes was the same as that in a lipid-free bulk solution. The CL measurement conditions in both a lipid-free bulk solution and in liposomes were optimized in the concentrations of luminol and H2O2 by measuring the CL response curves, in which only one peak appeared and the CL intensity was maximal. The CL intensity observed in HRP-catalyzed luminol CL in liposomes was a factor of seven greater than that observed in a lipid-free bulk solution. The CL intensity was dependent on the amount of HRP-encapsulated liposomes used. The detection limit in the direct detection of HRP encapsulated in liposomes was sensitive by a factor of 3 compared with that in HRP-catalyzed luminol CL in a lipid-free bulk solution.  相似文献   

7.
Summary: Hemoglobin (Hb)-encapsulating particles have been prepared in a single step by condensation reaction of butylcyanoacetate (BCNA) with formaldehyde (FA) in Hb aqueous solution. Dimethylamine was used as a base catalyst and then the reaction was performed in 0.1 M HEPES buffer (pH 7.4) at room temperature. Particle composition analysis by extraction indicated that the particles consisted of PBCNA, HEPES and Hb. The content of Hb loaded into the particles monotonously increased with increasing initial Hb concentrations. Almost all Hb molecules in aqueous solution could be recovered as particles. In addition, the encapsulated Hb maintained the oxygen-carrying capacity similar to native Hb. These results indicate that condensation reaction of BCNA with FA can provide the assembly of Hb molecules in aqueous solution.  相似文献   

8.
ABSTRACT

Herein we describe a simple method for the synthesis of polymer nanocarrier for the doxorubicin delivery. The nanocarrier consists of N-methyl-glucamine resorcinarenes that are covalently bound to phenylboronic acid. The nanocarrier is stable at normal pH but is hydrolysed at pH below 6. It demonstrates low cytotoxicity and haemolytic activity. Doxorubicin was successfully loaded into the nanocarriers cavity and its release occurs at pH. Flow cytometry data showed that the carrier improves the penetration of doxorubicin into M-Hela cancer cell lines. The encapsulated doxorubicin demonstrates higher cytotoxicity towards the cancer cells.  相似文献   

9.
Nano-scale liposomes were successfully produced using a Shirasu porous glass (SPG) membrane emulsification technique. Primary liposomes prepared by a film-hydration method were treated using SPG membranes with different pore sizes (2.0, 1.0, 0.7, 0.5, and 0.2 μm) for control over the liposome size. The liposome sizes were evaluated using a dynamic light scattering method and their morphologies were observed by optical microscopy and transmission electron microscopy. As the passage number of liposomes through SPG membrane increased, the size and its distribution of the liposomes gradually decreased. A smaller pore size of the SPG membrane and a higher applied pressure resulted in liposomes with a smaller size. After the preparation of nano-scale liposomes containing ammonium sulfate (AS), doxorubicin (DOX) was encapsulated in the liposomes by a remote loading method, where AS served as a precipitant for DOX. The encapsulation efficiency of the DOX was maximized up to 94% when the concentrations of AS and DOX were 250 and 0.045 mM, respectively. We have obtained the release profiles of the liposomes with different sizes. As shown below, liposomes with smaller size exhibited a faster release profile of drug due to the large surface area. These nano-scale liposomes encapsulating an anti-cancer drug can potentially be employed as drug delivery vehicles for intravenous injection.  相似文献   

10.
Targeting drugs selectively to cancer cells can potentially benefit cancer patients by avoiding side effects generally associated with several cancer therapies. One of the attractive approaches to direct the drug cargo to specific sites is to incorporate ligands at the surface of the delivery systems. Integrin α(5)β(1) is overexpressed in tumor vasculature and cancer cells, thus making it an attractive target for use in drug delivery. Our group has developed a fibronectin-mimetic peptide, PR_b, which has been shown to bind specifically to integrin α(5)β(1), thereby providing a tool to target α(5)β(1)-expressing cancer cells in vitro as well as in vivo. Our current work focuses on designing modified stealth liposomes (liposomes functionalized with polyethylene glycol, PEG) for combining the benefits associated with PEGylation, as well as imparting specific targeting properties to the liposomes. We have designed PEGylated liposomes that incorporate in their bilayer the fibronectin-mimetic peptide-amphiphile PR_b that can target several cancer cells that overexpress α(5)β(1), including the MDA-MB-231 breast cancer cells used in this study. We have encapsulated doxorubicin inside the liposomes to enhance its therapeutic potential via PEGylation as well as active targeting to the cancer cells. Our results show that PR_b-functionalized stealth liposomes were able to specifically bind to MDA-MB-231 cells, and the binding could be controlled by varying the peptide concentration. The intracellular trafficking of the doxorubicin liposomes was examined, and within minutes after delivery the majority of them were found to be in the early endosomes, whereas after a longer period of time they had accumulated in the late endosomes and lysosomes. The functionalized liposomes were found to be equally cytotoxic as the free doxorubicin, especially at higher doxorubicin concentrations, and provided higher cytotoxicity than the nontargeted and GRGDSP-functionalized stealth liposomes. Thus, the PR_b-functionalized PEGylated nanoparticles examined in this study offer a promising strategy to deliver their therapeutic payload directly to the breast cancer cells, in an efficient and specific manner.  相似文献   

11.
Microemulsions (ME) containing soya phosphatidylcholine (SPC)/polyoxyethylenglycerol trihydroxystearate 40 (EU)/sodium oleate (SO) as surfactant cholesterol (CHO) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant SPC/EU/SO weight ratio 3.5:3.5:3.0 by titration, in order to characterize the proportions between the components to form clear systems. The dynamic light scattering results showed that the size of the oil droplets decreases significantly with the ratio of surfactant/oil phase added to system. Depending on the composition ME system could exhibit a thixotropic behavior. The apparent viscosity increased 25- and 13-folds with cholesterol concentration for drug-free and drug-load ME, respectively. It was also verified that the octanol/aqueous buffer partition coefficient (KO/B) of doxorubicin (DOX) was pH dependent increasing abruptly above pH 6.0. It was possible to incorporate 2.24 mg/ml of DOX into ME. The incorporation of DOX in the ME systems increased the droplets size for all surfactant concentrations used in the system. The results suggest that DOX interacts with the microstructure of the ME at the studied pH increasing significantly the drug solubility. It was possible to conclude that the investigated ME can be a very promising vehicle as drug-carrier for administration of doxorubicin.  相似文献   

12.
Liposomes externally modified with the nineteen residues gH625 peptide, previously identified as a membrane‐perturbing domain in the gH glycoprotein of Herpes simplex virus type I, have been prepared in order to improve the intracellular uptake of an encapsulated drug. An easy and versatile synthetic strategy, based on click chemistry, has been used to bind, in a controlled way, several copies of the hydrophobic gH625 peptide on the external surface of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPG)‐based liposomes. Electron paramagnetic resonance studies, on liposomes derivatized with gH625 peptides, which are modified with the 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐4‐amino‐4‐carboxylic acid (TOAC) spin label in several peptide positions, confirm the positioning of the coupled peptides on the liposome external surface, whereas dynamic light scattering measurements indicate an increase of the diameter of the liposomes of approximately 30 % after peptide introduction. Liposomes have been loaded with the cytotoxic drug doxorubicin and their ability to penetrate inside cells has been evaluated by confocal microscopy experiments. Results suggest that liposomes functionalized with gH625 may act as promising intracellular targeting carriers for efficient delivery of drugs, such as chemotherapeutic agents, into tumor cells.  相似文献   

13.
Abstract

Extracts of soluble proteins obtained from rat liver mitochondria by freeze-thawing and subsequent diafiltration were fractionated by HPLC on a I 250 protein column. The column was eluted either with 0.05 M phosphate buffer pH 6.85 or 0.1 M acetate buffer pH 7.15. Specific fractions obtained by elution with either phosphate or acetate buffer showed a 6.1-fold or 5.5-fold increase in the specific activity of Carbamoyl phosphate synthase when compared with that of crude mitochondrial preparations. The purification and the molecular weight of carbamoyl phosphate synthase were verified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis.  相似文献   

14.
15.
The ability of low-frequency ultrasound (LFUS) to release encapsulated drugs from sterically stabilized liposomes in a controlled manner was demonstrated. Three liposomal formulations having identical lipid bilayer compositions and a similar size ( approximately 100 nm) but differing in their encapsulated drugs and methods of drug loading have been tested. Two of the drugs, doxorubicin and methylpredinisolone hemisuccinate, were remote loaded by transmembrane gradients (ammonium sulfate and calcium acetate, respectively). The third drug, cisplatin, was loaded passively into the liposomes. For all three formulations, a short exposure to LFUS (<3 min) released nearly 80% of the drug. The magnitude of drug release was a function of LFUS amplitude and actual exposure time, irrespective of whether irradiation was pulsed or continuous. Furthermore, no change in liposome size distribution or in the chemical properties of the lipids or of the released drugs occurred due to exposure to LFUS. Based on our results, we propose that the mechanism of release is a transient introduction of porelike defects in the liposome membrane, which occurs only during exposure to LFUS, after which the membrane reseals. This explains the observed uptake of the membrane-impermeable fluorophore pyranine from the extraliposomal medium during exposure to LFUS. The implications of these findings for clinical applications of controlled drug release from liposomes are discussed.  相似文献   

16.
Liposomes containing high concentrations of the anticancer drug doxorubicin, prepared by active-loading techniques, have been intensively investigated as potential agents for chemotherapy. The present study investigates the possibility of active uptake and photoinduced release of such solutes from liposomes incorporating a photoisomerizable lipid. The active loading of acridine orange and doxorubicin was investigated using liposomes containing entrapped ammonium sulfate. The liposomes were prepared with dipalmitoyl-L-alpha-phosphatidyl choline (DPPC) and a photochromic lipid, (1,2-(4'-n-butylphenyl)azo-4'-(gamma-phenylbutyroyl))-glycero-3- phosphocholine (Bis-Azo PC), which isomerizes on exposure to near-UV light with resulting changes in membrane permeability to solutes. The rate of loading of the vesicles below the phase transition temperature of DPPC was investigated as a function of Bis-Azo PC and cholesterol concentrations in the liposome. The rate of doxorubicin uptake was found to be greatly decreased in the presence of cholesterol, while below 30 degrees C the rate of acridine orange uptake was increased in the presence of cholesterol. On exposure to a single UV laser pulse, actively loaded acridine orange was rapidly released from liposomes containing Bis-Azo PC at a rate similar to that found for the indicator dye calcein. However while cholesterol had previously been shown to greatly enhance the rate of photo-induced calcein leakage, it had no significant effect on the rate of acridine orange release. After active loading into DPPC vesicles containing Bis-Azo PC, doxorubicin was also released after exposure to a single laser pulse, but at a rate slower than for acridine orange and calcein. The difference in behavior between these systems is ascribed to the interactions of acridine orange and doxorubicin with the liposome bilayer. Photoinduced release of pharmacologically active materials from sensitized liposomes might provide a useful adjunct or alternative to conventional photodynamic therapy.  相似文献   

17.
Deoxyribonucleic acid (DNA) vaccines are being investigated extensively because of their excellent potential over conventional protein ones. A suitable DNA carrier, consisting of uniformly dispersed chitosan-poly(acrylic acid) particles with an average size of 30 nm, was successfully synthesized by a dropping method with a ratio of chitosan solution to poly(acrylic acid) solution of 1:1 and was incubated in a buffer solution with a pH value of 3.0. The particle size increased from 35.76 to 45.90 nm when the pH value of the buffer solution was increased from 3.0 to 7.4. After freeze-drying, the non-incubated mixed solution showed a membranous morphology. A powdered product was formed from the mixed solution as incubated in buffer solution with pH values of 3.0 and 5.3. However, when the mixed solution was incubated in a buffer solution of pH 7.4, a mixture of membrane and powder was obtained.  相似文献   

18.
A novel pH-sensitive liposome encapsulating doxorubicin was prepared by a NH(4)HCO(3) gradient method. The liposomes were able to release the drug at pH 5.0 by the production of CO(2) gas. More importantly, the drug-loaded liposome effectively circumvented the breast cancer cells resistant to doxorubicin.  相似文献   

19.
A hydrophilic and temperature-induced degradation drug, vinorelbine bitartrate (VB)-loaded phosphatidylethanolamin liposomes (PSLs), was prepared by the thin-film hydration method. Liposomes were made of phosphatidylethanolamine: cholesteryl: oleic acid (PE: CHOL: OA, 3:3:1 mass/mass). The mean particle size of the PSLs ranged from 293.06 nm. The transmission electron microscope (TEM) images displayed that the shape of the PSLs was multilamellar vesicles with smooth surface. The highest entrapment efficiency (EE) and drug loading capacity (DL) could reach up to 68.5% and 6.23%, respectively. The PSLs was evaluated by comparing the rate of release of encapsulated VB in different phosphate buffer solution (PBS), and the result showed that the rate of drug release in acid medium was faster than in pH 7.4. Pharmacokinetic characteristics in vivo and the tissue distribution in mice were investigated, which provided experimental and theoretical basis for utilizing liposomes in malignant tumor chemotherapy.  相似文献   

20.
展学强  朱智甲  康经武 《色谱》2011,29(4):362-364
建立了以硝酸钾作为背景电解质测定阿霉素脂质体药物中微量硫酸根离子的毛细管电泳分析法。考察了分离电压、背景电解质、电渗流改性剂浓度、pH值对分离测定的影响。结果表明,当毛细管长度为60 cm(有效长度51.5 cm)、分离电压为~15 kV、缓冲溶液采用20 mmol/L硝酸钾(pH 7.0)、电渗流改性剂采用0.4 mmol/L十六烷基三甲基氯化铵(CTAC)、检测波长为202 nm时,阿霉素脂质体破乳液中硫酸根离子和氯离子在3 min内得到了基线分离,硫酸根离子迁移时间和峰面积的相对标准偏差分别小于0.01%和1.0%,检出限为5 μg/L。用该方法对阿霉素脂质体样品中的微量硫酸根离子进行了分析测定,结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号