首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Liquid crystals》2001,28(7):1009-1015
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

2.
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

3.
S. -L. Wu  S. Senthil 《Liquid crystals》2004,31(10):1387-1392
A homologous series of chiral thiolactate liquid crystals, alkyl 2-[4-(4-decyloxyphenyl)benzoyloxyphenyloxy]thiopropionates, ADBPT-n (n=2-6), was prepared from (R)-2-(4-hydroxyphenoxy)propionic acid. Structural effects on the mesomorphic and physical properties were investigated in terms of variation in the length of alkyl chain attached to the thiolactate group. The mesophases and their corresponding transition temperatures were identified by polarizing optical microscopy and differential scanning calorimetry. Compound ADBPT-4 exhibited SmA* and SmC* phases, whereas other compounds in the series exhibited the SmA* phase along with unidentified SmX1* and SmX2* phases. The maximum Ps value measured for ADBPT-4 in the SmC* phase was 17.5 nC cm-2, suggesting the polarization of the material is rather low. The tilt angles were also measured, reaching a maximum of 48 degree.  相似文献   

4.
J. Alderete  J. Belmar  M. Parra  C. Zú    iga  V. Jimenez 《Liquid crystals》2003,30(11):1319-1325
The synthesis and liquid crystalline properties of a new series of calamitic liquid crystals containing 4-H-benzopyran-4-one (chromone) within the central core is reported. The first homologue in the series display SmA phase (8a), the homologues (8b-e) exhibit SmA and SmC mesophases and the homologues (8f-h) exhibit only a SmC mesophase.  相似文献   

5.
Thermotropic ionic liquid crystals based on the flavylium scaffold have been synthesized and studied for their structure-properties relationship for the first time. The mesogens were probed by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X-ray diffraction (XRD). Low numbers of alkoxy side chains resulted in smectic (SmA) and lamello-columnar (LamCol) phases, whereas higher substituted flavylium salts showed Colro as well as ordered and disordered columnar (Colho, Colhd) mesophases. Mesophase width ranged from 13 K to 220 K, giving access to room temperature liquid crystals. The optical properties of the synthesized compounds were probed towards absorption and emission properties. Strong absorption with maxima between 444 and 507 nm was observed, and some chromophores were highly emissive with quantum yields up to 99 %. Ultimately, mesogenic and dye properties were examined by temperature-dependent emissive experiments in the solid state.  相似文献   

6.
Complex dielectric spectroscopy (frequency range 5 Hz–13 MHz) has been used to analyse the frequency, temperature and bias‐field dependences of the molecular dynamics of a very high‐spontaneous‐polarization ferroelectric liquid crystalline material exhibiting SmA, SmC* and unknown SmX smectic phases. Different smectic phase transition temperatures have been observed from the study of the temperature dependence of the dielectric strength and the relaxation frequency. The phase transition temperatures (crystalline to isotropic phases) have also been described very accurately from the temperature‐dependent symmetric and asymmetric shape parameters of the relaxation function and also the dc conductivity. In a planar aligned cell, two symmetric modes (Goldstone mode and domain mode) have been observed in both the SmX and SmC* phases. One asymmetric mode (X‐mode) observed in the SmC* and SmA phases could be related to the interaction of dipoles of the ferroelectric liquid crystals being affected by the surface of the cell. The soft mode, which usually appears very close to the SmC*–SmA phase transition was not observed until the bias field was applied. The second order nature of the SmC*–SmA phase transition was revealed.  相似文献   

7.
The synthesis and liquid crystalline properties of a new series of calamitic liquid crystals containing 4-H-benzopyran-4-one (chromone) within the central core is reported. The first homologue in the series display SmA phase (8a), the homologues (8be) exhibit SmA and SmC mesophases and the homologues (8fh) exhibit only a SmC mesophase.  相似文献   

8.
A series of ionic liquid crystals with an alkoxy biphenyl unit tethered via an alkyl spacer to a guanidinium head group were synthesised and the mesomorphic properties were studied by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction (XRD; WAXS and SAXS). Whereas all symmetrical guanidinium chlorides with the same chain lengths in alkyl tail and spacer displayed enantiotropic SmA2 phases, monotropic SmC2 phases with 1–2 K temperature range were only formed for chain lengths ≥ C10. Shifting the calamitic core more closely to the ionic head group by decreasing the tether length and simultaneously increasing the terminal alkyl chain improved the stability of both SmA and SmC phases considerably and led to enantiotropic SmC phases for the guanidinium chloride with C14 alkyl tail and C6 spacer. An even more pronounced effect was detected during anion exchange. Bromide, iodide, hexafluorophosphate, thiocyanate and triflate suppressed any SmC phase, whereas tetrafluoroborate behaved similar to chloride maintaining the SmC phase. However, acetate stabilised the SmC phase at the expense of the SmA phase. Based on temperature-dependant XRD measurements, a bilayer structure was proposed.  相似文献   

9.
Complex dielectric spectroscopy (frequency range 5 Hz-13 MHz) has been used to analyse the frequency, temperature and bias-field dependences of the molecular dynamics of a very high-spontaneous-polarization ferroelectric liquid crystalline material exhibiting SmA, SmC* and unknown SmX smectic phases. Different smectic phase transition temperatures have been observed from the study of the temperature dependence of the dielectric strength and the relaxation frequency. The phase transition temperatures (crystalline to isotropic phases) have also been described very accurately from the temperature-dependent symmetric and asymmetric shape parameters of the relaxation function and also the dc conductivity. In a planar aligned cell, two symmetric modes (Goldstone mode and domain mode) have been observed in both the SmX and SmC* phases. One asymmetric mode (X-mode) observed in the SmC* and SmA phases could be related to the interaction of dipoles of the ferroelectric liquid crystals being affected by the surface of the cell. The soft mode, which usually appears very close to the SmC*-SmA phase transition was not observed until the bias field was applied. The second order nature of the SmC*-SmA phase transition was revealed.  相似文献   

10.
We have reinvestigated the charge carrier transport properties in a liquid crystal of 2-(4'-heptyloxyphenyl)-6-dodecylthiobenzothiazole (7O-PBT-S12), for which the electronic conduction was first established in rodlike liquid crystals and for which the highest hole mobility in the smectic A (SmA) phase ever achieved was reported. We found that 7O-PBT-S12 exhibited three crystal phases, one of which appeared in a limited temperature range of 10 degrees just below the phase transition temperature from the SmA phase. In this crystal phase, nondispersive transient photohole currents were observed in time-of-flight experiments, and its hole mobility was determined to be 8 x 10(-3) cm(2)/Vs, slightly higher than that reported previously in the SmA phase. For the SmA phase, however, the hole mobility was 1 x 10(-4) cm(2)/Vs. Furthermore, we established the electron transport in the SmA phase of purified 7O-PBT-S12, whose mobility was the same as the hole mobility in that phase. In order to confirm generality of the new findings in 7O-PBT-S12, we investigated the carrier transport properties of its derivative having a short hydrocarbon chain, 2-(4'-heptyloxyphenyl)-6-butylthiobenzothiazole (7O-PBT-S4), and obtained comparable results. The present results correct a mistake in the previous report and give an idea of what a typical mobility in the SmA phase is. On the basis of these results, we discuss what determines the charge carrier mobility in smectic mesophases.  相似文献   

11.
Sixteen optically active, non‐symmetric dimers, in which cyanobiphenyl and salicylaldimine mesogens are interlinked by a flexible spacer, were synthesized and characterized. While the terminal chiral tail, in the form of either (R)‐2‐octyloxy or (S)‐2‐octyloxy chain attached to salicylaldimine core, was held constant, the number of methylene units in the spacer was varied from 3 to 10 affording eight pairs of (R & S) enantiomers. They were probed for their thermal properties with the aid of orthoscopy, conoscopy, differential scanning calorimetry and X‐ray powder diffraction. In addition, the binary mixture study was carried out using chiral and achiral dimers with the intensions of stabilizing optically biaxial phase/s, re‐entrant phases and important phase sequences. Notably, one of the chiral dimers as well as some mixtures exhibited a biaxial smectic A (SmAb) phase appearing between a uniaxial SmA and a re‐entrant uniaxial SmA phases. The mesophases such as chiral nematic (N*) and frustrated phases viz., blue phases (BPs) and twist grain boundary (TGB) phases, were also found to occur in most of the dimers and mixtures. X‐ray diffraction studies revealed that the dimers possessing oxybutoxy and oxypentoxy spacers show interdigitated (SmAd) phase where smectic periodicity is over 1.4 times the molecular length; whereas in the intercalated SmA (SmAc) phase formed by a dimer having oxydecoxy spacer the periodicity was found to be approximately half the molecular length. The handedness of the helical structure of the N* phases formed by two enantiomers was examined with the aid of CD measurements; as expected, these enantiomers showed optical activities of equal magnitudes but with opposite signs. Overall, it appears that the chiral dimers and mixtures presented herein may serve as model systems in design and developing novel materials exhibiting the apolar SmAb phase possessing D2h symmetry and nematic‐type biaxiality.  相似文献   

12.
Derivatives of relatively electron rich 1,5-dialkoxynaphthalene (Dan) donors and relatively electron deficient 1,4,5,8-naphthalenetetracarboxylic diimide (Ndi) acceptors have been exploited in the folding and self-assembly of a variety of complex molecular systems in solution. Here, we report the use of Dan and Ndi derivatives to direct assembly of extended columns with alternating face-centered stacked structure in the solid state. A variety of 1:1 Dan:Ndi mixtures produced mesophases that were found to be stable over temperature ranges extending up to 110 degrees C. Analysis of these mesophases indicates mixtures with soft/plastic crystal phases and a few mixtures with the thermodynamic properties of true liquid crystals, all composed of alternating donor-acceptor columns within. Importantly, a correspondence was found between the clearing and crystallization points of the mesophase mixtures and the melting/clearing points of the component Ndi and Dan units, respectively. This correspondence enables the predictable tuning of mesophase phase transition temperatures. The study of sterically hindered derivatives led to a set of mixtures in which a dramatic and sudden color change (deep red to yellow) was observed upon crystallization of the mesophase due to a phase separation of the component donor and acceptor units.  相似文献   

13.
《Liquid crystals》1999,26(3):341-349
The heat capacity of ANBC(16) has been measured between 15 and 500 K by adiabatic calorimetry. Three (one known and two newly found) crystal-crystal phase transitions and all the known liquid crystalline phases (SmC, cubic D and SmA) were detected. The temperatures, enthalpies and entropies of transition were determined for all the phase transitions observed. The entropy of transition is very small for the transition from/to the cubic D mesophase. The results are compared with the thermal properties of another cubic mesogen, BABH(8). The logical possibility is pointed out that the cubic mesophases of ANBC(16) and BABH(8) are of identical higher order structure, while discussing the fact that they are immiscible.  相似文献   

14.
Thermotropic ionic liquid crystals (LCs) are useful for a number of applications such as anisotropic ion transport and as organised reaction media/solvents because of their ordered fluid properties and intrinsic charge units. A large number of different ionic LC architectures are known, but only a handful of examples of gemini (i.e. paired or dimeric) ionic LCs have been prepared and studied. In this work, a series of 20 new symmetric, imidazolium-based, gemini cationic LCs containing two bridged imidazolium cations and two pendant alkyl chains was synthesised, and the thermotropic LC behaviours were characterised. The imidazolium unit provides a highly tunable and modular platform for the design and synthesis of gemini cationic LCs which offers excellent structure control. As expected, the thermotropic LC properties of these new amphilphilic, gemini ionic LCs were found to be strongly influenced by the length of the spacer between the imidazolium units, the length of the pendant alkyl tails, and the nature of the anion. Smectic A (SmA) thermotropic LC phases were observed in more than half of the gemini imidazolium LC systems studied.  相似文献   

15.
We report the synthesis of novel chiral catanionic liquid crystals bearing camphorsulfonamide substructures. The phase behaviour of these long-chain substituted imidazolium sulphates and sulfonates was investigated using X-ray diffraction (XRD), polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). We observed that the phase behaviour clearly depends on the substitution of both cation and anion. The chiral camphorsulfonamide substructures have an unfavourable influence on the formation of liquid crystalline (LC-) phases. Contrary to N,N'-di-alkyl-imidazolium salts, the formation of LC phases was only observed when both cation and anion are substituted with long alkyl chains (C(12) or C(16)). Furthermore, the phase transition temperatures depend on the chain length of the alkyl groups, as higher phase transition temperatures were observed for compounds bearing longer alkyl chains. However, no macroscopic evidence for the formation of chiral mesophases was obtained.  相似文献   

16.
In this paper,a series of chiral non-symmetrical liquid crystals(nBA-chol)consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core with different terminal alkyl chain has been synthesized and investigated for their liquid crystalline properties.Effects of numbers of methylene units in the terminal alkyl chain on the phase transition temperatures and on the temperature-dependent pitch lengths of the chiral liquid crystals have been studied.The long terminal alkyl chain tends ...  相似文献   

17.
By using aryl‐amination chemistry, a series of rodlike 1‐phenyl‐1H‐imidazole‐based liquid crystals (LCs) and related imidazolium‐based ionic liquid crystals (ILCs) has been prepared. The number and length of the C‐terminal chains (at the noncharged end of the rodlike core) and the length of the N‐terminal chain (on the imidazolium unit in the ILCs) were modified and the influence of these structural parameters on the mode of self‐assembly in LC phases was investigated by polarizing microscopy, differential scanning calorimetry, and X‐ray diffraction. For the single‐chain imidazole derivatives nematic phases (N) and bilayer SmA2 phases were found, but upon increasing the number of alkyl chains the LC phases were lost. For the related imidazolium salts LC phases were preserved upon increasing the number and length of the C‐terminal chains and in this series it leads to the phase sequence SmA–columnar (Col)–micellar cubic (CubI/Pm3n). Elongation of the N‐terminal chain gives the reversed sequence. Short N‐terminal chains prefer an end‐to‐end packing of the mesogens in which these chains are separated from the C‐terminal chains. Elongation of the N‐terminal chain leads to a mixing of N‐ and C‐terminal chains, which is accompanied by complete intercalation of the aromatic cores. In the smectic phases this gives rise to a transition from bilayer (SmA2) to monolayer smectic (SmA) phases. For the columnar and cubic phases the segregated end‐to‐end packing leads to core–shell aggregates. In this case, elongation of the N‐terminal chains distorts core–shell formation and removes CubI and Col phases in favor of single‐layer SmA phases. Hence, by tailoring the length of the N‐terminal chain, a crossover from taper‐shaped to polycatenar LC tectons was achieved, which provides a powerful tool for control of self‐assembly in ILCs.  相似文献   

18.
We have investigated hole transport properties in the smectic mesophases of a 2-phenylnaphthalene derivative 6-(4'-octylphenyl)-2-dodecyloxynaphthalene in detail by using time-of-flight technique. The transient photocurrents were measured in liquid-crystal cells with various thickness from 5 to 700 microm. They were well defined and nondispersive in the smectic A (SmA) phase up to 500 microm and in the smectic B (SmB) phase within the entire thickness employed, while they exhibited an exponential decay in the SmA phase at 700 microm. The mobilities in the SmA and SmB phases were constant in each mesophase irrespective of the cell thickness, and were 2.5 x 10(-4) and 1.7 x 10(-3) cm2V s, respectively. The hole lifetimes were determined to be 10 ms and longer than 5 ms for the SmA and SmB phases, respectively. We discuss the origin of these lifetimes from the two points of view, i.e., hole trapping by a trace amount of existing impurities and recombination with negative ionic charges. We conclude that impurities are mainly responsible for the present hole lifetime test.  相似文献   

19.
In an effort to control the phase ranges of highly ordered smectic phases, we examined the impact of molecular symmetry on phase behaviour of a series of 12 symmetrical and unsymmetrical 4,4′-dialkanoyloxybiphenyl derivatives. Combined differential scanning calorimetry, polarised optical microscopy, and X-ray diffraction studies indicated that the compounds studied formed smectic F liquid crystals, and in some cases, G phases at lower temperatures. Although the clearing temperatures were largely unaffected by molecular symmetry, the transitions from the SmF liquid crystals to more ordered phases were consistently lowered upon reducing the molecular symmetry. As a result, unsymmetrical molecules had broader mesophases than their higher symmetry isomers, suggesting a strategy for tuning the phase behaviour of these highly ordered lamellar phases, which have been widely targeted for organic semiconductors.  相似文献   

20.
Two series of binary mixtures composed of bent shaped and rod like molecules are reported. The first star shaped bent core molecules were synthesized and used as a component of binary mixtures. The chiral rod like compounds having commensurable length with the arms of the bent core compounds have been chosen for these mixtures. The resulted compositions show various thermotropic liquid crystalline phases that are characteristic to both types of liquid crystalline materials. In case of mixing the rod like molecules to the bent core compound the B2, B7 and induced B1 phases have been observed. While using the star-shaped bent core and chiral rod like compounds in mixture, the paraelectric smectic A, ferroelectric smectic C* and orthogonal hexatic smectic B phases were preferred. The appearing mesophases were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号