首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Using gauge formulation of gravity the three-dimensional SU(2) YM theory equations of motion are presented in equivalent form as FRW cosmological equations. With the radiation, the particular (periodic, big bang – big crunch) three-dimensional universe is constructed. Cosmological entropy bounds (so-called Cardy–Verlinde formula) have the standard form in such universe. Mapping such universe back to YM formulation we got the thermal solution of YM theory. The corresponding holographic entropy bounds (Cardy–Verlinde formula) in YM theory are constructed. This indicates to universal character of holographic relations.  相似文献   

2.
We derive a formula for the entropy for a multicomponent coupled fluid, which under special conditions reduces to the Cardy–Verlinde form relating the entropy of a closed FRW universe to its energy together with its Casimir energy. The generalized fluid obeys an inhomogeneous equation of state. A viscous dark fluid is included, and also modified gravity is included in terms of its fluid representation. It is demonstrated how such an expression reduces to the standard Cardy–Verlinde formula corresponding to the 2d CFT entropy in some special cases. The dynamical entropy bound for a closed FRW universe with dark components is obtained. The universality of the dynamical entropy bound near a future singularity (of all known four types), as well as near the Big Bang singularity, is investigated. It is demonstrated that, except from some special cases of Type II and Type IV singularities, the dynamical entropy bound is violated near the singularity even if quantum effects are taken into account. The dynamical entropy bound seems to be universal for the case of a regular universe, including the asymptotic de Sitter universe.  相似文献   

3.
We develop further the theory of Rational Conformal Field Theories (RCFTs) on a cylinder with specified boundary conditions emphasizing the role of a triplet of algebras: the Verlinde, graph fusion and Pasquier algebras. We show that solving Cardy's equation, expressing consistency of a RCFT on a cylinder, is equivalent to finding integer valued matrix representations of the Verlinde algebra. These matrices allow us to naturally associate a graph G to each RCFT such that the conformal boundary conditions are labelled by the nodes of G. This approach is carried to completion for sl(2) theories leading to complete sets of conformal boundary conditions, their associated cylinder partition functions and the A-D-E classification. We also review the current status for WZW sl(3) theories. Finally, a systematic generalisation of the formalism of Cardy–Lewellen is developed to allow for multiplicities arising from more general representations of the Verlinde algebra. We obtain information on the bulk–boundary coefficients and reproduce the relevant algebraic structures from the sewing constraints.  相似文献   

4.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein–Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this Letter, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction terms of entropy, temperature and energy caused by the generalized uncertainty principle. We calculate Cardy–Verlinde formula after considering the correction. In our calculation, we only think that the Bekenstein–Hawking area theorem is still valid after considering the generalized uncertainty principle and do not introduce any assumption. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the corrections caused by the generalized uncertainty principle to the black hole thermodynamic quantity of the complicated spacetime.  相似文献   

5.
Recently, a new interesting idea of origin of gravity has been developed by Verlinde. In this scheme of emergent gravity, where horizon entropy, microscopic de Sitter states and relevant contribution to gravity are involved, an entropy displacement resulting from matter behaves as a memory effect and can be exhibited at sub-Hubble scales, namely, the entropy displacement and its “elastic” response would lead to emergent gravity, which gives rise to an extra gravitational force. Then galactic dark matter effects may origin from such extra emergent gravity. We discuss some concepts in Verlinde’s theory of emergent gravity and point out some possible problems or issues, e.g., the gravitational potential caused by Verlinde’s emergent apparent dark matter may no longer be continuous in spatial distribution at ordinary matter boundary (such as a massive sphere surface). In order to avoid the unnatural discontinuity of the extra emergent gravity of Verlinde’s apparent dark matter, we suggest a modified dark-baryonic mass relation (a formula relating Verlinde’s apparent dark matter mass to ordinary baryonic matter mass) within this framework of emergent gravity. The modified mass relation is consistent with Verlinde’s result at relatively small scales (e.g., \(R<3h_{70}^{-1}\) Mpc). However, it seems that, compared with Verlinde’s relation, at large scales (e.g., gravitating systems with \(R>3h_{70}^{-1}\) Mpc), the modified dark-baryonic mass relation presented here might be in better agreement with the experimental curves of weak lensing analysis in the recent work of Brouwer et al. Galactic rotation curves are compared between Verlinde’s emergent gravity and McGaugh’s recent model of MOND (Modified Newtonian Dynamics established based on recent galaxy observations). It can be found that Verlinde rotational curves deviate far from those of McGaugh MOND model when the MOND effect (or emergent dark matter) dominates. Some applications of the modified dark-baryonic mass relation inspired by Verlinde’s emergent gravity will be addressed for galactic and solar scales. Potential possibilities to test this dark-baryonic mass relation as well as apparent dark matter effects, e.g., planetary perihelion precession at Solar System scale, will be considered. This may enable to place some constraints on the magnitudes of the MOND characteristic acceleration at the small solar scale.  相似文献   

6.
By viewing space-time as a continuum elastic medium and introducing an entropy functional for its elastic deformations, T. Padmanabhan has shown that general relativity emerges from varying the functional and that the latter suggests holography for gravity and yields the Bekenstein-Hawking entropy formula. In this paper we extend this idea to Riemann-Cartan space-times by constructing an entropy functional for the elastic deformations of space-times with torsion. We show that varying this generalized entropy functional permits to recover the full set of field equations of the Cartan-Sciama-Kibble theory. Our generalized functional shows that the contributions to the on-shell entropy of a bulk region in Riemann-Cartan space-times come from the boundary as well as the bulk and hence does not suggest that holography would also apply for gravity with spin in space-times with torsion. It is nevertheless shown that for the specific cases of Dirac fields and spin fluids the system does become holographic. The entropy of a black hole with spin is evaluated and found to be in agreement with Bekenstein-Hawking formula.  相似文献   

7.
We consider a finite action for a higher dimensional Taub–NUT/Bolt–(A)dS space via the so-called counter term subtraction method. In the limit of high temperature, we show that the Cardy–Verlinde formula holds for the Taub–Bolt–AdS metric and for the specific dimensional Taub–NUT–(A)dS metric, except for the Taub–Bolt–dS metric.  相似文献   

8.
Recently, it was argued (Tsallis and Cirto, Eur. Phys. J. C 73, 2487 2013) that the total entropy of a gravitational system should be related to the volume of system instead of the system surface. Here, we show that this new proposal cannot satisfy the unified first law of thermodynamics and the Friedmans equation simultaneously, unless the effects of dark energy candidate on the horizon entropy are considered. In fact, our study shows that some types of dark energy candidate may admit this proposal. Some general properties of required dark energy are also addressed. Moreover, our investigation shows that this new proposal for entropy, while combined with the second law of thermodynamics (as the backbone of Verlinde’s proposal), helps us in provideing a thermodynamic interpretation for the difference between the surface and bulk degrees of freedom which, according to Padmanabhan’s proposal, leads to the emergence of spacetime and thus the universe expansion. In fact, our investigation shows that the entropy changes of system may be equal to the difference between the surface and bulk degrees of freedom falling from surface into the system volume. Briefly, our results signal us that this new proposal for entropy may be in agreement with the thermodynamics laws, the Friedmann equation, Padmanabhan’s holographic proposal for the emergence of spacetime and therefore the universe expansion. In fact, this new definition of entropy may be used to make a bridge between Verlinde’s and Padmanabhan’s proposals.  相似文献   

9.
A modular category is a braided category with some additional algebraic features. The interest of this concept is that it provides a Topological Quantum Field Theory in dimension 3. The Verlinde formulas associated with a modular category are the dimensions of the TQFT modules. We discuss reductions and refinements of these formulas for modular categories related with SU(N). Our main result is a splitting of the Verlinde formula, corresponding to a brick decomposition of the TQFT modules whose summands are indexed by spin structures modulo an even integer. We introduce here the notion of a spin modular category, and give the proof of the decomposition theorem in this general context.  相似文献   

10.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. The different correction leading terms are obtained by the different methods. In this paper, we calculate the correction to SAdS5 black hole thermodynamic quantity due to the generalized uncertainty principle. Furthermore we derive that the black hole entropy obeys Bekenstein-Hawking area theorem. The entropy has infinite correction terms. And every term is finite and calculable. The corrected Cardy-Verlinde formula is derived. In our calculation, Bekenstein-Hawking area theorem still holds after considering the generalized uncertainty principle. We have not introduced any hypothesis. The calculation is simple. Physics meaning is clear. We note that our results are quite general. It is not only valid for four-dimensional spacetime but also for higher-dimensional SAdS spacetime.  相似文献   

11.
We show that reductions of KP hierarchies related to the loop algebra of SLn with homogeneous gradation give solutions of the Darboux-Egoroff system of PDE's. Using explicit dressing matrices of the Riemann-Hilbert problem generalized to include a set of commuting additional symmetries, we construct solutions of the Witten– Dijkgraaf–E. Verlinde–H. Verlinde equations.  相似文献   

12.
Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic force. In this work, we extend Verlinde’s proposal to accommodate generalized uncertainty principles (GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity (DSR). Using Verlinde’s proposal and two known models of GUPs, we obtain modifications to Newton’s law of gravitation as well as the Friedmann equation. Our modification to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a corresponding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to Friedmann-Robertson-Walker (FRW) solutions for the p = ωp equation of state.  相似文献   

13.
This article deals with the full Israel–Stewart causal theory of bulk viscosity as employed to the dissipative expansion of the early universe. It is shown that the nontruncated full theory can be cast in the form of a noncausal theory with an auxiliary condition which states that the square of dissipative contribution to the speed of sound varies with the particle number in a comoving volume. Also, a generalized temperature appears in a cosmological invariant which is shown to hold good for the dissipative expansion in an intermediate brief transition period (around the epoch time = 10–23 s) between the very early mild inflation stage of the universe and the standard radiation-dominated FRW era of it. With this generalized temperature, the Gibbs equation has been generalized. This equation is also shown to have an alternative form with a term depending on bulk viscosity. In the dissipative transition period, the universe as a thermodynamically open system of viscous fluid can generate specific entropy. In this period the temperature rose to a considerable extent. Due to the cosmological invariant, the dissipative contribution to the speed of sound and consequently the particle number decreased sharply, ensuring the second law of thermodynamics. It is possible to have an estimate of the specific entropy in consistency with the observations. The total entropy and the particle number of the observable universe have also been found here. These estimates agree with the accepted values for them.  相似文献   

14.
This paper shows for a general class of statistical mechanical models that when the microcanonical and canonical ensembles are nonequivalent on a subset of values of the energy, there often exists a generalized canonical ensemble that satisfies a strong form of equivalence with the microcanonical ensemble that we call universal equivalence. The generalized canonical ensemble that we consider is obtained from the standard canonical ensemble by adding an exponential factor involving a continuous function g of the Hamiltonian. For example, if the microcanonical entropy is C2, then universal equivalence of ensembles holds with g taken from a class of quadratic functions, giving rise to a generalized canonical ensemble known in the literature as the Gaussian ensemble. This use of functions g to obtain ensemble equivalence is a counterpart to the use of penalty functions and augmented Lagrangians in global optimization. linebreak Generalizing the paper by Ellis et al. [J. Stat. Phys. 101:999–1064 (2000)], we analyze the equivalence of the microcanonical and generalized canonical ensembles both at the level of equilibrium macrostates and at the thermodynamic level. A neat but not quite precise statement of one of our main results is that the microcanonical and generalized canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the generalized microcanonical entropy s–g is concave. This generalizes the work of Ellis et al., who basically proved that the microcanonical and canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the microcanonical entropy s is concave.  相似文献   

15.
We address the problem of defining the concept of entropy for anisotropic cosmological models. In particular, we analyze for the Bianchi I and V models the entropy which follows from postulating the validity of the laws of standard thermodynamics in cosmology. Moreover, we analyze the Cardy–Verlinde construction of entropy and show that it cannot be associated with the one following from relativistic thermodynamics.  相似文献   

16.
A proof that the prepotential for pure N = 2 Super-Yang–Mills theory associated with Lie algebras B r and C r satisfies the generalized WDVV (Witten–Dijkgraaf–Verlinde–Verlinde) system was given by Marshakov, Mironov, and Morozov. Among other things, they use an associative algebra of holomorphic differentials. Later Itô and Yang used a different approach to try to accomplish the same result, but they encountered objects of which it is unclear whether they form structure constants of an associative algebra. We show by explicit calculation that these objects are none other than the structure constants of the algebra of holomorphic differentials.  相似文献   

17.
We apply the Kerr/CFT correspondence to the rotating black p-brane solutions. These solutions give the simplest examples from string theory point of view. Their near horizon geometries have structures of AdS, even though black p-brane solutions do not have AdS-like structures in the non-rotating case. The microscopic entropy which can be calculated via the Cardy formula exactly agrees with Bekenstein–Hawking entropy.  相似文献   

18.
We derive a tensor artificial viscosity suitable for use in a 2D or 3D unstructured arbitrary Lagrangian–Eulerian (ALE) hydrodynamics code. This work is similar in nature to that of Campbell and Shashkov [1]; however, our approach is based on a finite element discretization that is fundamentally different from the mimetic finite difference framework. The finite element point of view leads to novel insights as well as improved numerical results. We begin with a generalized tensor version of the Von Neumann–Richtmyer artificial viscosity, then convert it to a variational formulation and apply a Galerkin discretization process using high order Gaussian quadrature to obtain a generalized nodal force term and corresponding zonal heating (or shock entropy) term. This technique is modular and is therefore suitable for coupling to a traditional staggered grid discretization of the momentum and energy conservation laws; however, we motivate the use of such finite element approaches for discretizing each term in the Euler equations. We review the key properties that any artificial viscosity must possess and use these to formulate specific constraints on the total artificial viscosity force term as well as the artificial viscosity coefficient. We also show, that under certain simplifying assumptions, the two-dimensional scheme from [1] can be viewed as an under-integrated version of our finite element method. This equivalence holds on general distorted quadrilateral grids. Finally, we present computational results on some standard shock hydro test problems, as well as some more challenging problems, indicating the advantages of the new approach with respect to symmetry preservation for shock wave propagation over general grids.  相似文献   

19.
B.L. Hu 《Physics letters. A》1983,97(9):368-374
We discuss the meaning of gravitational entropy of the universe when quantum dissipative processes like cosmological particle production are important and propose to use the entropy generated in these processes as a measure of the change in gravitational entropy of the spacetime dynamics. Penrose's Weyl Curvature Hypothesis is re-examined in this generalized context. It is shown that gravitational entropy defined as such can actually decrease in the quantum regime by the action of vacuum viscosity. The theoretical and cosmological implications of this postulate is discussed.  相似文献   

20.
We extend the work of Kurchan on the Gallavotti–Cohen fluctuation theorem, which yields a symmetry property of the large deviation function, to general Markov processes. These include jump processes describing the evolution of stochastic lattice gases driven in the bulk or through particle reservoirs, general diffusive processes in physical and/or velocity space, as well as Hamiltonian systems with stochastic boundary conditions. For dynamics satisfying local detailed balance we establish a link between the average of the action functional in the fluctuation theorem and the macroscopic entropy production. This gives, in the linear regime, an alternative derivation of the Green–Kubo formula and the Onsager reciprocity relations. In the nonlinear regime consequences of the new symmetry are harder to come by and the large deviation functional difficult to compute. For the asymmetric simple exclusion process the latter is determined explicitly using the Bethe ansatz in the limit of large N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号