首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The potential in alcohols as fuel had for long being recognized by the early inventors of machines and engines, even before gasoline and the hydrocarbons became popular. In fact, Henry Ford, one of the pioneers in automobile manufacture, designed his equipment to run on ethanol. But since then, time has seen gasoline and other conventional fuels take the front seat in engine application. This article is an insight into the experiment carried out to produce fuel from cassava starch and the characterization to determine some of the fuel properties in comparison to gasoline. The choice of cassava for the production was based on its availability and ability to grow in almost all geographical regions in Nigeria. Experimental production gave a sample concentration of 87% corresponding to a yield of 0.534 cm3 of ethanol per gram of starch hydrolyzed while the sample characteristics for the latent heat of vaporization, heat of combustion, flash point, and density are 950 kJ/kg, 22133.7 kJ/kg, 17–20°C, and 0.825, respectively. The results obtained compared favorably with those of gasoline that the sample concentration.  相似文献   

2.
Nature or Petrochemistry?—Biologically Degradable Materials   总被引:3,自引:0,他引:3  
Naturally occurring polymers have been utilized for a long time as materials, however, their application as plastics has been restricted because of their limited thermoplastic processability. Recently, the microbial synthesis of polyesters directly from carbohydrate sources has attracted considerable attention. The industrial-scale production of poly(lactic acid) from lactic acid generated by fermentation now provides a renewable resources-based polyester as a commodity plastic for the first time. The biodegradability of a given material is independent of its origin, and biodegradable plastics can equally well be prepared from fossil fuel feedstocks. A consideration of the overall carbon dioxide emissions and consumption of non-renewable resources over the entire life-cycle of a product is not necessarily favorable for plastics based on renewable resources with current technology-in addition to the feedstocks for the synthesis of the polymer materials, the feedstock for generation of the overall energy required for production and processing is decisive.  相似文献   

3.

The heat of combustion (HOC) of butanol/gasoline and butanol/diesel fuel blends was systematically determined in a Parr 6725/6772 heat-loss compensated semi-microcalorimeter under controlled temperature and pressure conditions. A set of blends containing 15 and 30% of butanol, in mass fraction, was tested, and the results were compared to those obtained for pure ethanol, pure gasoline, pure diesel, and Brazilian commercial gasoline. In view of the high volatility of samples, the use of gelatin capsules was necessary to avoid evaporation losses during the critical step of sampling. Results evidenced that despite a slight energy reduction observed for all blends, HOC values remained quite close to those measured for gasoline and diesel, even when considering blends with 30% of butanol in mass fraction, which reduction does not exceed 8.5%. Compared to ethanol, a HOC up to 14.7% higher was achieved for butanol. The present work confirms that in mass fractions up to 30%, butanol can be satisfactorily blended with gasoline and diesel without causing major impacts on the fuel energy density and, more than that, can offer energy advantage compared to ethanol.

  相似文献   

4.
Water-in-diesel (W/D) emulsion fuels were prepared through an ultrasonic processor by using high energy emulsification method. Accordingly, the physical and chemical properties were analyzed. A decrease in viscosity was found in the emulsion fuel in contrast to the neat diesel which signifies the enhanced fluidity of the fuel. The emulsion fuel was then used to carry combustion tests in an internal combustion engine. A decrease in exhaust temperature was observed when a high surfactant to water ratio was used, which lead to minimal heat loss. As water is emulsified with diesel, effectiveness of combustion is improved rather than neat diesel fuel. It was also explored that the addition of water-in-diesel is influential in terms of reduction in exhaust gas emission such as carbon dioxide, carbon monoxide, ammonia from the internal combustion engine. Therefore, this type of emulsion fuel would be a useful contribution in the fuel economy, but also in making it environmentally friendly since diesel fuel is now considered one of the leading fuels causing ecological contamination.  相似文献   

5.
中国燃油大气铅排放量估算   总被引:1,自引:0,他引:1  
依据不同时期车用汽油铅含量国家标准及汽油消费量数据,估算了我国1980—2006年的全国燃油大气铅排放量及2001—2005年分地区燃油大气铅排放量。结果表明,27年间我国因汽油燃烧共计向大气排放了约20万t铅。汽油无铅化后,燃油大气铅年排放量比从前降低了98%。  相似文献   

6.

This paper investigates the effect of some biofuels on thermal balance and performance characteristics of a single-cylinder, four-stroke SI internal combustion engine. In this study, total and instantaneous energy balance of an air-cooled, small-scale engine using various biofuels is investigated. An experimental study is carried out on gasoline engine to validate the numerical calculations. Bio-alternative fuels which include methanol, ethanol and 2-ethanol–gasoline-blended fuels consisting of E85, E15 are examined numerically. Results indicate that methanol is the most effective fuel in aspect of power generation. Ethanol, E85, E15 and gasoline are placed in next positions, respectively. Break specific fuel consumption shows totally reversed trend. It is evaluated that by increasing engine speed, heat transfer to brake power ratio decreases and lower percentage of energy in form of heat transfer is lost. The least heat transfer to brake power ratio among studied fuel is related to methanol which approves it as the most efficient biofuel. Based on instantaneous in-cylinder energy balance analysis, at the end of combustion and during expansion stroke, instantaneous brake work of fuels outpaces each other at around 40° crank angle aTDC.

  相似文献   

7.
Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations.  相似文献   

8.
The requirements for improving the efficiency of internal combustion engines and reducing emissions have promoted the development of new combustion technologies under extreme operating conditions (e.g., lean combustion), and the ignition and combustion characteristics of fuels are increasingly becoming important. A chemical kinetic reduced mechanism consisting of 115 species and 414 elementary reactions is developed for the prediction of ignition and combustion behaviors of gasoline surrogate fuels composed of five components, namely, isooctane, n-heptane, toluene, diisobutylene, and cyclohexane (CHX). The CHX sub-mechanism is obtained by simplifying the JetSurF2.0 mechanism using direct relationship graph error propagating, rate of production analysis, and temperature sensitivity analysis and CHX is mainly consumed through ring-opening reactions, continuous dehydrogenation, and oxygenation reactions. In addition, kinetic parameter corrections were made for key reactions R14 and R391 based on the accuracy of the ignition delay time and laminar flame velocity predictions. Under a wide range of conditions, the mechanism’s ignition delay time, laminar flame speed, and the experimental and calculated results of multi-component gasoline surrogate fuel and real gasoline are compared. The proposed mechanism can accurately reproduce the combustion and oxidation of each component of the gasoline-surrogate fuel mixture and real gasoline.  相似文献   

9.

Background

Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels.

Results

Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions.

Conclusions

Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.  相似文献   

10.

Synthesis gas provides a simple substrate for the production of fuels and chemicals. Synthesis gas can be produced via established technologies from a variety of feedstocks including coal, wood, and agricultural and municipal wastes. The gasification is thermally efficient and results in complete conversion of the feedstock to fermentable substrate.Clostridium ljungdahlii grows on the synthesis gas components, carbon monoxide, hydrogen, and carbon dioxide. Production of acetic acid and ethanol accompanies growth with synthesis gas as sole source of energy and carbon. Rate and yield parameters are compared forC. ljungdahlii grown on carbon monoxide, or hydrogen with carbon dioxide.

  相似文献   

11.

In this paper, combined heat and power frameworks employing solid oxide fuel cell power module and a small-scale gas turbine are presented. The offered system is utilized as heat and power supply for residential consumers with a carbon dioxide sorption circulating fluidized bed. As well a favorable solution for the high penalties associated with CO2 capture and reuse of the CO contents is offered. The combined heat and power system considered by a different arrangement in order to high proficiency, controllability, heat recovery and high capacity of energy. In the proposed system, the unburned product from the solid oxide fuel cell is re-extracted and utilized as a fuel source. The suggested system is analyzed by the first and second law of thermodynamics. During this study, comprehensive calculations of chemistry and thermal within the fuel cell are performed to get accurate results. The impact of various parameters, for example fuel and oxidant rate, carbon dioxide removal, operating pressure, compressor parameter on work and heat output of the cycle as well as the discharge of carbon dioxide contamination, is investigated. The optimal pressure ratio of the compressor to minimize the carbon dioxide production is found.

  相似文献   

12.
中国纤维素乙醇技术的研究进展   总被引:1,自引:0,他引:1  
杨斌  Charles E.Wyman 《化学进展》2007,19(7):1072-1075
中国面临着严重的能源短缺和环境污染问题,中国政府正在局部几个省份内政策性鼓励燃料乙醇生产和使用.尽管当前主要是用玉米和谷物作为生产乙醇的原料,然而中国具有大量潜在的低成本的纤维素生物质原料,可以极大地扩大乙醇的产量,降低原料成本.近20年来,由于技术的革命性进步,已使得纤维素乙醇的生产成本从4美元/加仑以上,降低至约1.2-1.5美元/加仑.其中,每吨生物质约44美元.因此,目前乙醇掺汽油具有十分强的市场竞争力.已有几个公司正在建造首批商业纤维素乙醇工厂,虽然这些刚起步的小型设施在合理利用和管理上风险较小,但规模经济需要较大型工厂.尽管配送生物质原料的成本会随需求的增加而增加,但在乙醇生产基础上的生物精炼技术的发展,尤其是化工产品和动力的协同生产,将会使全过程的经济可行性大大提高.进一步深入的基础研究,将解决低成本下实现纤维素的完全利用,以确保在无政策性补贴的前提下,真正使纤维素乙醇成为具有市场竞争力的低成本纯液体燃料.  相似文献   

13.
乙醇/柴油混合燃料的相溶性及对发动机性能影响的研究   总被引:2,自引:0,他引:2  
利用助溶剂解决乙醇/柴油的相溶性问题,讨论了混合燃料中乙醇和助溶剂添加量对相溶性的影响,并使用助溶剂体积分数为1.5%、乙醇体积分数分别为5%、10%、15%的混合燃料及 20号纯柴油(分别表示为E5、E10、E15和 E0)在发动机台架上进行了性能和排放试验。研究结果表明,柴油的烃组成是决定相分离温度的决定性因素;对全部测试油品,乙醇体积分数在10%、助溶剂添加体积分数为1.5%时,混合燃料相溶性较好。台架试验显示,随着混合燃料中乙醇掺烧比例的增加,发动机的燃油消耗率逐渐增加,而发动机的额定功率和最大扭矩逐渐降低,但最大扭矩降低的幅度较小;此外,随着乙醇掺烧比例的增加,CO比排放量减少,HC、NOx和PM的比排放量逐渐增加,但NOx和PM的比排放量增加幅度不大。10%体积分数的乙醇添加量是乙醇/柴油的最佳掺烧比。  相似文献   

14.
The detection and identification of ignitable liquid residues in fire debris can be meaningful in fire investigations. However, background pyrolysis products and weathering hinder the identification and classification steps. In addition to those processes, the acidification of the ignitable liquids before the combustion process could make those tasks even more difficult. Nevertheless, there are no systematic studies assessing the extraction, analysis, and composition of acidified ignitable liquid residues obtained from fire debris. In this work, a method for the study of acidified ignitable liquid residues in fire debris by solid‐phase microextraction with gas chromatography and mass spectrometry is proposed. This methodology has been evaluated, first with simulated solutions (gasoline/sulfuric acid mixtures set on fire under controlled conditions), and then with analysis of samples from real fire debris obtained from 18 chemical ignition Molotov cocktails made with sulfuric acid and three different ignitable liquids (two types of gasoline and diesel fuel). In addition, the extensive modifications observed in chromatograms of acidified ignitable liquid residues regarding neat and weathered samples were studied. These alterations were produced by the combustion and acidification processes. As a consequence, tert‐butylated compounds are proposed as diagnostic indicators for the identification of acidified gasoline in fire debris, even in strongly weathered samples.  相似文献   

15.
A direct ethanol fuel cell offers an attractive, fairly high density, energy source, if an electrochemical system can be developed that efficiently carries out the 12-electron oxidation of ethanol to carbon dioxide and water. To that end, new catalyst systems must be developed along with fuel cell operating conditions that encourage the complete oxidation of ethanol, as opposed to the presently available platinum on carbon systems that tend to produce acetaldehyde (two-electron oxidation) or acetic acid (four-electron oxidation) products. It is found that a composite nanoparticulate catalyst containing platinum and tin oxide or platinum indium tin oxide allows the partial conversion of ethanol to its 12-electron oxidation products. Catalysts of this type can be formed using a modified polyol process. Elevation of the operating temperature of a proton exchange membrane fuel cell using the indicated catalysts to 130 degrees C facilitates the production of carbon dioxide and provides an improved current-voltage response.  相似文献   

16.
Lignocellulosic biomass is one of the most plentiful and potentially cheapest feedstocks for ethanol production. The cellulose component can be broken down into glucose by enzymes and then converted to ethanol by yeast. However, hydrolysis of cellulose to glucose is difficult, and some form of pretreatment is necessary to increase the susceptibility of cellulose to enzymatic attack. An analysis has been completed of two pretreatment options, dilute sulfuric acid hydrolysis and sulfur dioxide impregnated steam explosion, for two feedstocks, wheat straw and aspen wood chips. Detailed process flow sheets and material and energy balances were used to generate equipment cost information. A technical and economic analysis compared the two feedstocks for each of the two pretreatments. For the same pretreatment, sugars produced from aspen wood hydrolysis were cheaper because of the higher carbohydrate content of aspen, whereas dilute acid pretreatment is favored over acid-catalyzed steam explosion.  相似文献   

17.
《印度化学会志》2023,100(2):100876
The direct ethanol fuel cell is a green and renewable power source alternative to fossil fuels and produces less emissions compared to a combustion engine. Ethanol can be generated in great quantity from renewable resources like biomass through a fermentation process. Bio-generated ethanol is thus attractive fuel since growing crops for biofuels absorbs much of the carbon dioxide emitted into the atmosphere from the oxidation of ethanol. The platinum and palladium were co-deposited on graphite substrate by the galvanostatic technique and employed as anode catalyst for ethanol electrooxidation. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy. The cyclic voltammetry (CV) were used for the estimation of the electrochemically active surface area (ECSA) of the synthesized catalysts in alkaline medium. The CVs for ethanol oxidation revealed superior catalytic activity of Pt–Pd/C compared to Pd/C and Pt/C. The effect of OH? on ethanol oxidation at Pt–Pd/C catalyst was studied using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The Pt–Pd/C catalyst shows good stability and enhanced electrocatalytic activity is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH? adsorption on the surface and palladium ad-atom contribution on the alloyed surface.  相似文献   

18.
概述了目前国内外燃料乙醇产业现状。结合我国中粮生化能源(肇东)有限公司燃料乙醇装置,重点介绍了我国目前的燃料乙醇生产工艺技术水平、特点以及与国外的差距。本文从提高燃料乙醇生产技术水平、降低生产成本、寻找廉价非粮原料和开发新生产工艺等几个方面,对燃料乙醇生产技术的发展作了展望。  相似文献   

19.
我国燃料乙醇生产技术的现状与展望   总被引:3,自引:0,他引:3  
岳国君  武国庆  郝小明 《化学进展》2007,19(7):1084-1090
概述了目前国内外燃料乙醇产业现状.结合我国中粮生化能源(肇东)有限公司燃料乙醇装置,重点介绍了我国目前的燃料乙醇生产工艺技术水平、特点以及与国外的差距.本文从提高燃料乙醇生产技术水平、降低生产成本、寻找廉价非粮原料和开发新生产工艺等几个方面,对燃料乙醇生产技术的发展作了展望.  相似文献   

20.
Methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are oxygenated compounds added to gasoline to enhance octane rating and to improve combustion. They may be found as pollutants of living and working environments. In this work a robotized method for the quantification of low level MTBE, ETBE and TAME in human urine was developed and validated. The analytes were sampled in the headspace of urine by SPME in the presence of MTBE-d12 as internal standard. Different fibers were compared for their linearity and extraction efficiency: carboxen/polydimethylsiloxane, polydimethylsiloxane/divinylbenzene, and polydimethylsiloxane. The first, although highly efficient, was discarded due to deviation of linearity for competitive displacement, and the polydimethylsiloxane/divinylbenzene fiber was chosen instead. The analysis was performed by GC/MS operating in the electron impact mode. The method is very specific, with range of linearity 30-4600 ng L−1, within- and between-run precision, as coefficient of variation, <22 and <16%, accuracy within 20% the theoretical level, and limit of detection of 6 ng L−1 for all the analytes. The influence of the matrix on the quantification of these ethers was evaluated analysing the specimens of seven traffic policemen exposed to autovehicular emissions: using the calibration curve and the method of standard additions comparable levels of MTBE (68-528 ng L−1), ETBE (<6 ng L−1), and TAME (<6 ng L−1) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号