首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
ABCD‐type 4‐miktoarm star copolymers of styrene (St), α‐methylstyrene (αMSt), tert‐butyl methacrylate (tBuMA), and 4‐vinylpyridine (4VP) were synthesized via anionic polymerization using 1,3‐bis(1‐phenylvinyl)benzene (m‐DDPE) as the linking molecule. The synthetic route was rationally designed with respect to the reactivity of individual propagating anion towards the double bond of m‐DDPE. Thus the synthesis includes several consecutive key reactions, for example, the monoaddition of polystyryllithium towards m‐DDPE, the polymerization of tBuMA initiated by the resulting monoadduct to produce a diblock macromonomer, the coupling of the macromonomer with poly(α‐methylstyryl)lithium to form a 3‐arm star anion, and the polymerization of 4‐vinylpyridine initiated by the star anion. These reactions were conducted either in a one‐pot process, in which the diblock macromonomer was in situ coupled with poly(α‐methylstyryl)lithium, or in a batch polymerization process, in which the same diblock macromonomer was separated. The final product was hydrolyzed to produce a zwitterionic miktoarm star copolymer, which was soluble at lower pH but insoluble in neutral and basic solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4818–4828, 2007  相似文献   

2.
原子转移自由基聚合原位合成温敏性微球   总被引:1,自引:0,他引:1  
以过硫酸钾为引发剂、丙酮-水[V(丙酮)∶V(水)=4∶6]的混合溶剂为反应介质, 在少量二乙烯苯存在的条件下使苯乙烯(St)和对氯甲基苯乙烯(CMSt)进行无皂乳液共聚反应, 得到了粒径大小均匀的交联型聚苯乙烯(PSt)微球, 由X射线光电子能谱对表面组分测定发现: CMSt上的氯原子在聚合过程中富集于交联微球的表面. 以此交联型PSt微球为原子转移自由基聚合(ATRP)的引发剂, 在22 ℃下引发N-异丙基丙烯酰胺(NIPAAm)进行原位ATRP反应, 得到了表面原子转移自由基聚合接枝的交联聚苯乙烯(PNIPAAm-g-PSt)温敏性微球. 借助傅立叶变换红外光谱、差示扫描量热仪、扫描电子显微镜及激光光散射仪等对PNIPAAm-g-PSt的结构、相转变温度、形态及不同温度下的粒径变化进行了测定, 结果表明NIPAAm单体成功地原位ATRP接枝在交联PSt微球的表面, 接枝微球的球形更规整, 在水中的相转变温度约为32 ℃, 具有明显的温度敏感性.  相似文献   

3.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
以AgNO3为金属源,通过乙醇将与聚N-异丙基丙烯酰胺接枝聚丙烯腈/聚苯乙烯(PNIPAAm-g-PAN/PSt)聚合物微球表面酰胺基团配位的银离子(Ag+)还原,一步法制备了PNIPAAm-g-PAN/PSt载银复合微球。通过傅立叶变换红外(FTIR)和紫外-可见光光谱表征发现,由Ag+还原所得的Ag纳米颗粒被成功地固载在PNIPAAm-g-PAN/PSt 微球上;用透射电子显微镜(TEM)对载银微球的大小和形态进行了表征;热重分析(TGA)结果表明,固载在微球表面的银纳米颗粒的含量(质量分数)为12%;抗菌实验结果表明,所制备的载银微球具有抗革兰氏阴性菌的活性。  相似文献   

5.
Crosslinked poly(4‐vinylbenzyl chloride) (PVBC) nanospheres of about 160 nm were first synthesized by emulsion copolymerization of 4‐vinylbenzyl chloride (VBC) in the presence of a crosslinking agent, p‐divinylbenzene. Subsequent modification of the nanosphere surfaces via surface‐initiated atom transfer radical polymerization of 4‐vinylpyridine, using the VBC units of PVBC on the nanosphere surface as the macroinitiators, produced a well‐defined and covalently tethered poly(4‐vinylpyridine) (P4VP) shells of 24–27 nm in thickness. Activation of the P4VP shells in a PdCl2 solution, followed by reactions with CO or H2S gas, gave rise to the corresponding P4VP composite shells containing densely dispersed palladium metal or palladium sulfide nanoparticles. The chemical composition of the nanosphere surfaces at various stages of surface modification was characterized by X‐ray photoelectron spectroscopy. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the organic/inorganic hybrid nanospheres coated with palladium/P4VP shells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2119–2131, 2008  相似文献   

6.
储鸿  杨伟  陈明清  陆剑燕  施冬健  明石满 《中国化学》2008,26(10):1907-1912
以α-溴代丙酸乙酯(EPN-Br)为引发剂, N,N, N′,N″,N″-五甲基二亚乙基三胺(PMDETA)为配体,使甲基丙烯酸叔丁酯进行原子转移自由基聚合,合成了端基带溴原子的聚甲基丙烯酸叔丁酯(PtBMA-Br)大分子中间体,通过其与甲基丙烯酸的亲核取代反应,得到了末端C=C双键含量高的大分子单体(MAA-PtBMA),其相对分子质量可控制在5400-12000g/mol的范围内,分子量分布≤1.20。以偶氮二异丁腈为自由基引发剂,在乙醇中使MAA-PtBMA大分子单体与苯乙烯(St)进行分散共聚,制得了甲基丙烯酸叔丁酯接枝聚苯乙烯(PtBMA-g-PSt)微米级共聚微球,该微球具有核壳结构。  相似文献   

7.
8.
PSt种子与“花瓣”形PSt/PAN复合颗粒的制备   总被引:4,自引:0,他引:4  
以过硫酸钾为引发剂,在乙醇/水的混合介质中使苯乙烯进行无皂乳液聚合,得到了单分散亚微米级聚苯乙烯(PSt)微球.用扫描电子显微镜研究了引发剂浓度、单体浓度、反应温度和溶剂组成对PSt微球粒径的影响.结果表明,改变上述条件能明显影响其粒径.以所得单分散聚苯乙烯微球为种子,在丙烯酸单封端聚乙二醇大分子单体存在的条件下,使丙烯腈和少量苯乙烯进行新的无皂种子乳液聚合,在合适的条件下制得到了“花瓣”形的聚合物复合颗粒,为深入探讨这类特殊形态聚合物颗粒的形成机理提供了新的佐证.  相似文献   

9.
Based on coordination polymerization mechanism only, novel stereoregular graft copolymers with syndiotactic polystyrene main chain and isotactic polypropylene side chain (sPS‐g‐iPP) were synthesized via two steps of catalytic reactions. First, a chain transfer reaction was initiated by a chain transfer complex composed of a styrene derivative, 1,2‐bis(4‐vinylphenyl)ethane, and hydrogen in propylene polymerization mediated by rac‐Me2Si[2‐Me‐4‐Ph(Ind)]2ZrCl2 and MAO, which gave iPP macromonomer bearing a terminal styryl group (iPP‐t‐St). Then the iPP‐t‐St macromonomers of varied molecular mass were engaged in syndiospecific styrene polymerization over a typical mono‐titanocene catalyst (CpTiCl3/MAO) under different conditions to produce sPS‐g‐iPP graft copolymers of varied structure. With an effective purification process, well‐defined sPS‐g‐iPP copolymers were obtained, which were then subjected to differential scanning calorimetry (DSC) and polarized optical micrograph (POM) studies. The graft copolymers were generally found with dual melting and crystallization temperatures, which were ascribable respectively to the sPS backbone and iPP graft. However, it was revealed that the two segments displayed largely different melting and crystallization behaviors than sPS homopolymer and the precursory iPP‐t‐St macromonomer. Consequently, the graft copolymer exhibited much distinctive crystalline morphologies when compared with their individual components. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

10.
Bulk free‐radical polymerization of 2‐vinylpyridine (2VP) in the presence of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) was studied under different conditions (temperature and presence of additives). Linear poly‐(2‐vinylpyridine) with a narrow molecular weight distribution and controllable molecular weight was prepared in the presence of acetic anhydride at 95 °C up to a conversion of 66%. At higher conversions side reactions became very important (pseudoliving polymerization). By applying this procedure, well‐defined random copolymers of 2VP with styrene or tert‐butylmethacrylate as well as block copolymers of 2VP with styrene were synthesized. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2889–2895, 2001  相似文献   

11.
The following block–comb/graft copolymers of styrene (S), isoprene (I), and butadiene (B)—PS‐b‐(PB‐g‐PB), PS‐b‐(PB‐g‐PB)‐b‐PS, (PB‐g‐PB)‐b‐P2VP, (PS‐g‐PB)‐b‐(PI‐g‐PS), (PS‐g‐PB)‐b‐(PI‐g‐PS)‐b‐(PB‐g‐PI), (PS‐g‐PB)‐b‐(PI‐g‐PS)‐b‐(PB‐g‐PI)‐b‐(PI‐g‐PS)‐b‐(PS‐g‐PB), and (PS)2(PB‐g‐PB) [where PS is polystyrene, PB is polybutadiene, P2VP is poly(2‐vinylpyridine) (2VP), and PI is polyisoprene]—were synthesized with the macromonomer strategy and anionic polymerization high‐vacuum techniques. The synthetic approach involves the synthesis and block copolymerization of styrenic macromonomers in situ without isolation. The prepared samples were characterized by size exclusion chromatography with a differential refractometer detector, size exclusion chromatography with a two‐angle laser light scattering detector, and NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4040–4049, 2005  相似文献   

12.
Long‐subchain hyperbranched polystyrene (lsc‐hp PSt) with uniform subchain length was obtained through copper‐catalyzed azide‐alkyne cycloaddition click chemistry from seesaw macromonomer of PSt having one alkynyl group anchored at the chain centre and two azido group attached to both chain ends [alkynyl‐(PSt‐N3)2]. After precipitation fraction, different portions of lsc‐hp PSt having narrow overall molecular weight distribution were obtained for further grafting with alkynyl‐capped poly(N‐isopropylacrylamide) (alkynyl‐PNIPAM), which was obtained via single‐electron transfer living radical polymerization of NIPAM with propargyl 2‐bromoisobutyrate as the initiator and grafted onto the peripheral azido groups of lsc‐hp PSt via click chemistry. Thus, amphiphilic lsc‐hp PSt grafted with PNIPAM chains (lsc‐hp PSt‐g‐PNIPAM) was obtained and would have star‐like conformation in tetrahydrofuran (THF). By replacing THF with water, lsc‐hp PSt‐g‐PNIPAM was dissolved at molecular level in aqueous solution due to the hydrophilicity of PNIPAM and exhibited thermal induced shrinkage of PNIPAM arms. The water‐insoluble lsc‐hp PSt would collapse densely and could be served as a reservoir to absorb hydrophobic chemicals in aqueous solution. The influence of overall molecular weight of lsc‐hp PSt on the absorption of pyrene was studied. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Hierarchical Fe3O4@poly(4‐vinylpyridine‐co‐divinylbenzene)@Au (Fe3O4@P(4‐VP–DVB)@Au) nanostructures were fabricated successfully by means of a facile two‐step synthesis process. In this study, well‐defined core–shell Fe3O4@P(4‐VP–DVB) microspheres were first prepared with a simple polymerization method, in which 4‐VP was easily polymerized on the surface of Fe3O4 nanoparticles by means of strong hydrogen‐bond interactions between ? COOH groups on poly(acrylic acid)‐modified Fe3O4 nanoparticles and a 4‐VP monomer. HAuCl4 was adsorbed on the chains of a P(4‐VP) shell and then reduced to Au nanoparticles by NaBH4, which were embedded into the P(4‐VP) shell of the composite microspheres to finally form the Fe3O4@P(4‐VP–DVB)@Au nanostructures. The obtained Fe3O4@P(4‐VP–DVB)@Au catalysts with different Au loadings were applied in the reduction of 4‐nitrophenol (4‐NP) and exhibited excellent catalytic activity (up to 3025 h?1 of turnover frequency), facile magnetic separation (up to 31.9 emu g?1 of specific saturation magnetization), and good durability (over 98 % of conversion of 4‐NP after ten runs of recyclable catalysis and almost negligible leaching of Au).  相似文献   

14.
Poly(2‐vinylpyridine) (P2VP) containing functionalized end groups was synthesized using nitroxyl‐mediated radical polymerization with a hydroxy‐functionalized stable free radical. It was shown that P2VP could be synthesized with variable molar masses and low polydispersities. The transformation of the hydroxy groups to an acrylic ester led to the formation of macromonomers. A free‐radical copolymerization of these macromonomers with N‐isopropylacrylamide gave a graft copolymer with a poly(N‐ispopropylacrylamide) backbone and P2VP side chains. Polymers containing different amounts of the monomers were synthesized. It was possible to vary both the amount of P2VP side chains at a constant chain length of the macromonomer and the chain length at a nearly constant chain number. The behavior of the multifunctional macromolecules at different temperatures and pH values was investigated using dynamic light scattering and DSC. The macromolecules were found to retain the specific properties of the homopolymers. The hydrodynamic radii of the synthesized graft copolymers were both dependent on the temperature and pH value. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3797–3804, 2001  相似文献   

15.
The polymerization of 4‐vinylpyridine was conducted in the presence of a cyclic trithiocarbonate (4,7‐diphenyl‐[1,3]dithiepane‐2‐thione) as a reversible addition–fragmentation transfer (RAFT) polymerization agent, and a multiblock polymer with narrow‐polydispersity blocks was prepared. Two kinds of multiblock copolymers of styrene and 4‐vinylpyridine, that is, (ABA)n multi‐triblock copolymers with polystyrene or poly(4‐vinylpyridine) as the outer blocks, were prepared with multiblock polystyrene or poly(4‐vinylpyridine) as a macro‐RAFT agent, respectively. GPC data for the original polymers and polymers cleaved by amine demonstrated the successful synthesis of amphiphilic multiblock copolymers of styrene and 4‐vinylpyridine via two‐step polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2617–2623, 2007  相似文献   

16.
Through atom transfer radical polymerization of styrene with 1,3‐dibromomethyl‐5‐propargyloxy‐benzene as initiator followed by the conversion of bromine end‐groups into azide end‐groups, well‐defined seesaw‐type polystyrene (PSt) macromonomers with two molecular weights (Mn = 8.0 and 28.0 k) were obtained. Thus, a series of long‐subchain hyperbranched (lsc‐hp) PSt with high overall molar masses and regular subchain lengths were obtained via copper‐catalyzed azide–alkyne cycloaddition click chemistry performed in THF and DMF, respectively. The polycondensation of seesaw‐type macromonomers was monitored by gel permeation chromatography. Because DMF is the reaction medium with higher polarity, click reaction proceeds more easily in DMF. Therefore, the growth of lsc‐hp PSt in DMF has faster rate than that in THF for the shorter seesaw‐type macromonomer (Seesaw‐8k). However, THF is the solvent with better solubility to PSt and leads to looser conformation of PSt chains. Thus, for the longer seesaw macromonomer (Seesaw‐28k), lsc‐hp PSt in THF has higher overall molar mass. As well, the self‐cyclization of seesaw‐type macromonomers also depends on both solvent and molar mass of macromonomer. The self‐cyclization degrees of Seesaw‐8k in DMF and THF are almost the same while that of Seesaw‐28k macromonomer is obviously lower in THF. The experimental results suggest a physical consideration to control the growth of hyperbranched polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Summary: Spherical micelles have been formed by mixing, in DMF, a poly(styrene)‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐block‐P2VP‐block‐PEO) triblock copolymer with either poly(acrylic acid) (PAA) or a tapered triblock copolymer consisting of a PAA central block and PEO macromonomer‐based outer blocks. Noncovalent interactions between PAA and P2VP result in the micellar core while the outer corona contains both PS and PEO chains. Segregation of the coronal chains is observed when the tapered copolymer is used.

Inclusion of comb‐like chains with short PEO teeth in the corona triggers the nanophase segregation of PS and PEO as illustrated here (PS = polystyrene; PEO = poly(ethylene oxide)).  相似文献   


18.
The spontaneous copolymerization of 4‐vinylpyridine (4‐VP) activated with lithium perchlorate (LiClO4) with various electron rich monomers (p‐methoxystyrene, MeOSt; p‐methylstyrene, MeSt; styrene, St) was investigated in various solvent systems at 75°C. Increasing the LiClO4 concentration and the nucleophilicity of the electron rich monomer increased the copolymer yields. Both 1H‐NMR and elemental analysis confirmed the almost 1:1 copolymer structure for VP/MeOSt system which possessed high molecular weight and narrow polydispersity (PDI). Compared to 4‐VP activated with zinc chloride, LiClO4 systems showed slightly lower yields and much narrower PDI. We also investigated the spontaneous copolymerization of 4‐VP activated with various protic acids in the reaction with various electron rich comonomers. However, generally protic salt forms showed less solubility in organic solvents and showed low molecular weight polymer products with low yields. The proposed initiation mechanism exhibits the formation of a σ‐bond between the β‐carbons of the two donor‐acceptor monomers, creating the 1,4‐tetramethylene biradical intermediate initiating the copolymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1709–1716, 1999  相似文献   

19.
Well-defined poly(vinyl acetate)-block-poly(4-vinylpyridine) (PVAc-b-P4VP) block copolymers were synthesized for the first time by a combination of cobalt-mediated radical polymerization (CMRP) and reversible addition–fragmentation chain transfer (RAFT) polymerization, and were used to prepare PVAc-b-P4VP hairy polystyrene (PSt) particles. PVAc end-capped by a cobalt(II) acetylacetonate complex was first synthesized by the CMRP of vinyl acetate, after which the cobalt complex was modified into a dithiobenzoate group for the RAFT polymerization of 4-vinylpyridine. The hairy PSt particles were synthesized by the dispersion polymerization of St using the PVAc-b-P4VP as both a macro-initiator and a colloidal stabilizer under UV radiation. The average size of PSt particles synthesized with 20 wt.% of PVAc-b-P4VP (M n = 39,500 g/mol) was 136 nm (CV = 19.2%). Very small Au nanoparticles were successfully immobilized on the surface of the PSt particles.  相似文献   

20.
Using 2‐chloropropionamide derivative of poly(propyleneimine) dendrimer DAB‐dendr‐(NH2)32 (DAB‐32‐Cl) as the macroinitiator, atom transfer radical polymerization of styrene was successfully carried out in DMF medium. The monodisperse poly(propyleneimine)–polystyrene (dendrimer–PSt) particles with diameters smaller than 100 nm could be prepared. The morphology, size, and size distribution of the dendrimer–PSt particles were characterized by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The effects of reaction temperature, the ratio of St/macroinitiator, and reaction time on the size, and size distribution of the dendrimer–PSt nanoparticles were investigated. In a selective solvent (DMF/H2O), polymers can self‐assemble into different aggregate configurations such as regular microsphere and wire‐like thread. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2658–2666, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号