首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Nuclear Physics A》1987,466(1):85-108
The family of all Hartree-Fock-Bogoliubov (HFB) states for a given set of r isosopin-spin orbitals form a set of coherent states. The set of antisymmetrized geminal power (AGP) states for a given set of r isospin-spin orbitals form a set of charge-projected coherent states, with the number of particles n as the “charge” and the HFB coherent state as the generating function. Both these coherent states are associated with the group SO(2r). The approximate time evolution of the system generated by restricting the quantum mechanical evolution to the family of HFB and AGP coherent states is described as a classical dynamics with the energy of the coherent state as hamiltonian function. The phase space is isomorphic to the coset space SO(2r)/U(r). The random phase approximation based on HFB and AGP states is derived by considering the harmonic approximation to the hamiltonian function. This work generalizes the group theoretical approaches to Hartree-Fock, and time-dependent Hartree-Fock theory by the use of non-number-conserving (HFB) and correlated (AGP) states.  相似文献   

2.
The coherence transformation and distillation for a class of special mixed coherent states of rank-2 under incoherent operations (IO) is discussed. Similar to the entanglement transformation for mixed entangled states, the catalytic coherence transformation for this class of special mixed coherent states is analyzed. On the one hand, it is found that some of the mixed coherent states can be converted into other mixed coherent states under IO. But for those mixed coherent states which fail in the coherence conversion under IO, the catalytic coherence manipulation can solve this problem. In this case, a mixed coherent state cannot be converted into another under IO, while the coherence transformation can be realized with the help of coherence-assisted incoherent operations, that is, catalytic coherence transformation. On the other hand, these special mixed coherent states can be distilled into the maximally pure coherent states or mixed states of arbitrary dimensions by strictly incoherent operations with certain probabilities. Finally, the coherence transformation of this type of mixed states can be generalized to the case of higher rank in a similar way, which is discussed at the end of this paper.  相似文献   

3.
We investigate the infinite volume limit of quantized photon fields in multimode coherent states. We show that for states containing a continuum of coherent modes, it is mathematically and physically natural to consider their phases to be random and identically distributed. The infinite volume states give rise to Hilbert space representations of the canonical commutation relations which we construct concretely. In the case of random phases, the representations are random as well and can be expressed with the help of Itô stochastic integrals. We analyze the dynamics of the infinite state alone and the open system dynamics of small systems coupled to it. We show that under the free field dynamics, initial phase distributions are driven to the uniform distribution. We demonstrate that coherences in small quantum systems, interacting with the infinite coherent state, exhibit Gaussian time decay. The decoherence is qualitatively faster than the one caused by infinite thermal states, which is known to be exponentially rapid only. This emphasizes the classical character of coherent states.  相似文献   

4.
In the quantum information theory operates with qubits and N-qubits that can be express through coherent states. Density operator admits a representation in terms of coherent states formalism. Consequently, in this paper the notions of qubit and density operators are described in the framework of coherent states. We have expressed a qubit as a coherent state, and thus a sequence of qubits becomes the tensor product of the coherent states. For the ensembles of qubits, it could be used the density operator, in order to describe the informational content of the ensemble. The coherent states representation may play an important role in the quantum information theory and the use of this formalism is not only theoretical, but also, due to its applications, of some practical relevance.  相似文献   

5.
Role of quantum interference in the origin of higher-order nonclassical characteristics of radiation field has been probed vis-à-vis a discrete and a continuous superposition of coherent states. Specifically, the possibilities of observing higher-order nonclassical properties (e.g., higher-order antibunching (HOA), higher-order sub-Poissonian photon statistics (HOSPS), higher-order squeezing (HOS) of Hong-Mandel type and Hillery type) have been investigated using a shifted symmetric cat state that reduces to Yurke-Stoler, even and odd coherent states at various limits. This shifted symmetric cat state which can be viewed as a discrete superposition of coherent states is found to show HOA and HOSPS. Similarly, higher-order nonclassical properties of a one-dimensional continuous superposition of coherent states is also studied here. The investigation has revealed the existence of HOS and HOSPS in the one-dimensional continuous superposition of coherent states studied here. Effect of non-Gaussianity inducing operations (e.g., photon addition and addition followed by subtraction) on these superposition states have also been investigated. Finally, some comparisons have been made between the higher-order nonclassical properties of discrete and continuous superposition of coherent states.  相似文献   

6.
The features of the formation of correlated coherent states of a particle in a parabolic potential well at its monotonic deformation (expansion or compression) in finite limits have been considered in the presence of dissipation and a stochastic force. It has been shown that, in both deformation regimes, a correlated coherent state is rapidly formed with a large correlation coefficient |r| → 1, which corresponds at a low energy of the particle to a very significant (by a factor of 1050–10100 or larger) increase in the transparency of the potential barrier at its interaction with atoms (nuclei) forming the “walls” of the potential well or other atoms located in the same well. The efficiency of the formation of correlated coherent states, as well as |r|, increases with an increase in the deformation interval and with a decrease in the deformation time. The presence of the stochastic force acting on the particle can significantly reduce the maximum |r| value and result in the fast relaxation of correlated coherent states with |r| → 0. The effect of dissipation in real systems is weaker than the action of the stochastic force. It has been shown that the formation of correlated coherent states at the fast expansion of the well can underlie the mechanism of nuclear reactions at a low energy, e.g., in microcracks developing in the bulk of metal hydrides loaded with hydrogen or deuterium, as well as in a low-pressure plasma in a variable magnetic field in which the motion of ions is similar to a harmonic oscillator with a variable frequency.  相似文献   

7.
朱孟正  赵春然 《光子学报》2014,40(10):1469-1473
利用弱非线性的交叉克尔介质和对强相干探测场的动量积分零拍探测,呈现了一个关于制备六光子最大纠缠态的方案,如实现制备Dicke态和W态.在本方案中,只要相干探测光场的强度足够大时,对交叉克尔介质的非线性强度要求可以较弱,因而当前实验技术条件上均能满足本方案的要求.考虑到目前实验上实现单光子很是相对困难的,在信号模上仅用弱的相干光替代单光子源,从而进一步增强了本方案的实验可行性.  相似文献   

8.
A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique.  相似文献   

9.
We study the method of generation of states that approximate superpositions of large-amplitude coherent states (SCSs) with high fidelity in free-traveling fields. Our approach is based on the representation of an arbitrary single-mode pure state, and SCSs in particular, in terms of displaced number states with an arbitrary displacement amplitude. The proposed optical scheme is based on alternation of photon additions and displacement operators (in the general case, N photon additions and N − 1 displacements are required) with a seed coherent state to generate both even and odd displaced squeezed SCSs regardless of the parity of the used photon additions. It is shown that the optical scheme studied is sensitive to the seed coherent state if the other parameters are unchanged. Output states can approximate either even squeezed SCS or odd SCS shifted relative to each other by some value. This allows constructing a local rotation operator, in particular, the Hadamard gate, which is a mainframe element for quantum computation with coherent states. We also show that three-photon additions with two intermediate displacement operators are sufficient to generate even displaced squeezed SCS with the amplitude 1.7 and fidelity more than 0.99. The effects deteriorating the quality of output states are considered.  相似文献   

10.
Multi-mode entangled coherent states are important resources for linear optics quantum computation and teleportation. Here we introduce the generalized balanced N-mode coherent states which recast in the multi-qudit case. The necessary and sufficient condition for bi-separability of such balanced N-mode coherent states is found. We particularly focus on pure and mixed multi-qubit and multi-qutrit like states and examine the degree of bipartite as well as tripartite entanglement using the concurrence measure. Unlike the N-qubit case, it is shown that there are qutrit states violating monogamy inequality. Using parity, displacement operator and beam splitters, we will propose a scheme for generating balanced N-mode entangled coherent states for even number of terms in superposition.  相似文献   

11.
R R Puri 《Pramana》1997,48(3):787-797
A definition of coherent states is proposed as the minimum uncertainty states with equal variance in two hermitian non-commuting generators of the Lie algebra of the hamiltonian. That approach classifies the coherent states into distinct classes. The coherent states of a harmonic oscillator, according to the proposed approach, are shown to fall in two classes. One is the familiar class of Glauber states whereas the other is a new class. The coherent states of spin constitute only one class. The squeezed states are similarly defined on the physical basis as the states that give better precision than the coherent states in a process of measurement of a force coupled to the given system. The condition of squeezing based on that criterion is derived for a system of spins.  相似文献   

12.
We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded.  相似文献   

13.
The SU(1,1) coherent states, so-called Barut-Girardello coherent state and Perelomov coherent state, for the generalized two-mode time-dependent quadratic Hamiltonian system are investigated through SU(1,1) Lie algebraic formulation. Two-mode Schrödinger cat states defined as an eigenstate of $\hat{K}_{-}^{2}The SU(1,1) coherent states, so-called Barut-Girardello coherent state and Perelomov coherent state, for the generalized two-mode time-dependent quadratic Hamiltonian system are investigated through SU(1,1) Lie algebraic formulation. Two-mode Schr?dinger cat states defined as an eigenstate of are also studied. We applied our development to two-mode Caldirola-Kanai oscillator which is a typical example of the time-dependent quadratic Hamiltonian system. The time evolution of the quadrature distribution for the probability density in the coherent states are analyzed for the two-mode Caldirola-Kanai oscillator by plotting relevant figures.  相似文献   

14.
In this paper we have showed that the qubit can be expressed through the coherent states. Consequently, a message, i.e. a sequence of qubits, is expressed as a tensor product of coherent states. In the quantum information theory and practice, only the code and key message are expressed as a sequence of qubits, i.e. through a quantum channel, the properly information will be transmitted by using a classical channel. Even if the most used coherent states in the quantum information theory are the coherent states of the harmonic oscillator (particularly, expressing by them the Schrödinger “cat states” and the Bell states), several authors have been demonstrated that other kind of coherent states may be used in quantum information theory. For the ensembles of qubits, we must use the density operator, in order to describe the informational content of the ensemble. The diagonal representation of the density operator, in the coherent state representation, is also useful to examine the entanglement of the states.  相似文献   

15.
王中杰  李聪  张晓东 《光子学报》2014,(11):1342-1346
分析了增光子二模纠缠相干态的纠缠特性,得到共生纠缠度的解析表示式.结果表明:增光子二模纠缠相干态的共生纠缠度与叠加态的相位有非常灵敏的关系.提出了一种制备增光子相干态和增光子二模纠缠相干态的方法,其制备过程为首先把增光子相干态转化为相干态与真空态一种特殊的叠加态(叠加系数与相干态振幅有关),再通过位于高Q腔内的原子与经典激光场的相互作用,从而实现增光子相干态的制备.通过一个飞行原子先后与两个光腔中光场相互作用可以实现增光子二模纠缠相干态的制备.  相似文献   

16.
王中杰  李聪  张晓东 《光子学报》2012,41(11):1342-1346
分析了增光子二模纠缠相干态的纠缠特性,得到共生纠缠度的解析表示式.结果表明:增光子二模纠缠相干态的共生纠缠度与叠加态的相位有非常灵敏的关系.提出了一种制备增光子相干态和增光子二模纠缠相干态的方法,其制备过程为首先把增光子相干态转化为相干态与真空态一种特殊的叠加态(叠加系数与相干态振幅有关),再通过位于高Q腔内的原子与经典激光场的相互作用,从而实现增光子相干态的制备.通过一个飞行原子先后与两个光腔中光场相互作用可以实现增光子二模纠缠相干态的制备.  相似文献   

17.
Whereas boson coherent states with complex parametrization provide an elegant, and intuitive representation, there is no counterpart for fermions using complex parametrization. However, a complex parametrization provides a valuable way to describe amplitude and phase of a coherent beam. Thus we pose the question of whether a fermionic beam can be described, even approximately, by a complex-parametrized coherent state and define, in a natural way, approximate complex-parametrized fermion coherent states. Then we identify four appealing properties of boson coherent states (eigenstate of annihilation operator, displaced vacuum state, preservation of product states under linear coupling, and factorization of correlators) and show that these approximate complex fermion coherent states fail all four criteria. The inapplicability of complex parametrization supports the use of Grassman algebras as an appropriate alternative.   相似文献   

18.
We propose an approach with displaced states to use it for rotations of base coherent states and squeezed coherent states. Our approach is based on representation of the coherent states in free-traveling fields in terms of displaced number states with arbitrary amplitude of displacement. Two optical schemes are developed for construction of Hadamard gate for the base states. One of the optical schemes is based on alternation of photon additions and displacement operators (in general case, N-photon additions and N?1-displacements are required) to generate displaced squeezed even/odd superposition of coherent states (SCSs) with high fidelity in dependency on type (computational zero or one) of the base input state. Another optical scheme uses two-photon subtracted squeezed coherent states to approximate outcome of the Hadamard gate for the base squeezed coherent states. Output states approximate with high fidelity either even squeezed SCS or odd SCS shifted relative to each other by some value. It enables to adjust the optical scheme for construction of the Hadamard gate being mainframe element for quantum computation with basic squeezed coherent states.  相似文献   

19.
Time-dependent coherent states for a time-dependent harmonic oscillator are constructed in the framework of algebraic dynamics. These coherent states are gauge-covariant, and its time evolution is governed only by the solutions of a linear differential equation which describes the motion of the corresponding classical timedependent harmonic oscillator. Its non-classical and quantum statistical properties can thus be controlled by a proper choice of the frequency of the harmonic oscillator. Our coherent states reduce to Glauber coherent states in the case as the frequency is independent of time.  相似文献   

20.
Whereas boson coherent states with complex parametrization provide an elegant, and intuitive representation, there is no counterpart for fermions using complex parametrization. However, a complex parametrization provides a valuable way to describe amplitude and phase of a coherent beam. Thus we pose the question of whether a fermionic beam can be described, even approximately, by a complex-parametrized coherent state and define, in a natural way, approximate complex-parametrized fermion coherent states. Then we identify four appealing properties of boson coherent states (eigenstate of annihilation operator, displaced vacuum state, preservation of product states under linear coupling, and factorization of correlators) and show that these approximate complex fermion coherent states fail all four criteria. The inapplicability of complex parametrization supports the use of Grassman algebras as an appropriate alternative.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号