首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a model of the active site of [NiFe] hydrogenases, a dinuclear nickel-ruthenium complex [Ni(xbsms)Ru(CO)2Cl2] was synthesized and fully characterized. The three-dimensional structure reveals a nickel center in a square-planar dithioether-dithiolate environment connected to a ruthenium moiety via a Ni(mu-SR)2Ru bridge. This complex catalyzes hydrogen evolution by electroreduction of the weakly acidic Et3NH+ ions in N,N-dimethylformamide and is therefore the first functional bioinspired model of [NiFe] hydrogenases.  相似文献   

2.
The first density functional calculations on high-spin (HS) Ni(II) models for the active site of the [NiFe] hydrogenases predict a ligand arrangement about Ni that is in better agreement with the crystal structures than previous predictions for low-spin (LS) Ni(II) models. With the crystal structures' geometry, the HS form is approximately 20 kcal/mol lower in energy than the LS one.  相似文献   

3.
A novel molecular triad [FeFe]-H(2)ase 1, and its model complexes 2 and 3 have been successfully constructed. The multistep PET and long-lived Fe(i)Fe(0) species were found to be responsible for the better performance of triad 1 than that of 2 with 3 for light-driven H(2) evolution.  相似文献   

4.
Two photocatalytic hydrogen evolution systems were constructed by assembling [FeFe]‐hydrogenase mimics, either carboxyl group‐containing ( C1 ) or not ( C2 ), on to the surface of ZnS using triethanolamine as electron donor in DMF‐H2O (9/1, v/v) solution. Upon irradiation for 30 h, the turnover numbers of hydrogen evolution were 3400 and 4950 for the hybrid system C1 /ZnS and C2 /ZnS, respectively. The photocatalytic activity of the C2 /ZnS system was five times higher than the activity of the pristine ZnS, suggesting that the [FeFe]‐hydrogenase mimics are crucial toward improving the activity of ZnS. On the basis of the spectroscopic studies and analyses, the photogenerated electron transfer from ZnS to the mimics is probably responsible for the activity enhancement of ZnS. The time dependence of hydrogen generation shows that the mimic C2 is more active than C1 . The different hydrogen evolution activity can be attributed to the different adsorption modes of the two [FeFe]‐hydrogenase mimics on the surface of ZnS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
[NiFe] hydrogenase, the enzyme of which catalyzes the reversible oxidation of molecular hydrogen to protons and electrons, contains a unique heterodinuclear thiolate-bridged Ni-Fe complex in which the iron center is coordinated by CO and CN. We have synthesized dithiolate-bridged Ni-Fe complexes bearing CO and CN ligands to model the active center of [NiFe] hydrogenase. The Ni-Fe complexes containing a [(CN)2(CO)2Fe(mu-S2)NiS2] framework are the closest yet structural models of [NiFe] hydrogenase.  相似文献   

6.
Both title compounds, bis­[tris(2‐amino­ethyl)­amine]­nickel(II) dichloride, [Ni(tren)2]Cl2, (I), and bis­[tris(2‐amino­ethyl)­amine]­nickel(II) tetra­thio­tungstate, [Ni(tren)2]WS4, (II), contain the [Ni(tren)2]2+ cation [tren is tris(2‐amino­ethyl)­amine, C6H18N4]. The tren mol­ecule acts as a tridentate ligand around the central Ni atom, with the remaining primary amine group not bound to the central atom. In (I), Ni2+ is located on a centre of inversion surrounded by one crystallographically independent tren mol­ecule. In the [Ni(tren)2]2+ cation of (II), the Ni atom is bound to two crystallographically independent tren mol­ecules. The Ni atoms in the [Ni(tren)2]2+ complexes are in a distorted octahedral environment consisting of six N atoms from the chelating tren mol­ecules. The counter‐ions are chloride anions in (I) and the tetrahedral [WS4]2? anion in (II). Hydro­gen bonding is observed in both compounds.  相似文献   

7.
The binuclear [Ni(L)Fe(CO)3], , and trinuclear [Ni(L){Fe(CO)3}2], , complexes adopt unusual structural motifs whereby Fe(CO)3 units bind to [Ni(L)] via mu2-S bridging modes, C=N imine pi-bonds and potential Ni-Fe bonding interactions.  相似文献   

8.
The binuclear complex [Ni(2)(L)(MeCN)(2)](3+) (L(2-) = compartmental macrocycle incorporating imine N and thiolate S donors) has a Ni(III) center bridged via two thiolate S-donors to a diamagnetic Ni(II) center. The ground-state has dominant 3d(z)(1)(2) character similar to that observed for [NiFe] hydrogenases in which Ni(III) is bridged via two thiolate donors to a diamagnetic center (Fe(II)). The system has been studied by X-ray crystallography and pulse EPR, ESEEM, and ENDOR spectroscopy in order to determine the extent of spin-delocalization onto the macrocycle L(2-). The hyperfine coupling constants of six nitrogen atoms have been identified and divided into three sets of two equivalent nitrogens. The most strongly coupled nitrogen atoms (a(iso) approximately 53 MHz) stem from axially bound solvent acetonitrile molecules. The two macrocycle nitrogens on the Ni(III) side have a coupling of a(iso) approximately 11 MHz, and those on the Ni(II) side have a coupling of a(iso) approximately 1-2 MHz. Density functional theory (DFT) calculations confirm this assignment, while comparison of the calculated and experimental (14)N hyperfine coupling constants yields a complete picture of the electron-spin density distribution. In total, 91% spin density is found at the Ni(III) of which 72% is in the 3d(z)(2) orbital and 16% in the 3d(xy) orbital. The Ni(II) contains -3.5% spin density, and 7.5% spin density is found at the axial MeCN ligands. In analogy to hydrogenases, it becomes apparent that binding of a substrate to Ni at the axial positions causes a redistribution of the electron charge and spin density, and this redistribution polarizes the chemical bonds of the axial ligand. For [NiFe] hydrogenases this implies that the H(2) bond becomes polarized upon binding of the substrate, which may facilitate its heterolytic splitting.  相似文献   

9.
A new method of synthesizing single-component molecular conductor [Ni(dmit)2] bythe reaction 2(Me4N)[Ni(dmit)2]2→ [Ni(dmit)2] (Me4N)[Ni(dmit)2] is reported. [Ni(dmit)2]exhibits a semiconductive behavior above 167 K, while from 167 K down to the measuring limit of 60 K, it exhibits metallic conductivity.  相似文献   

10.
X-ray photoelectron spectroscopy and first-principles density-functional calculations were used to study the interaction of thiophene, H(2)S, and S(2) with Ni(2)P(001), alpha-Mo(2)C(001), and polycrystalline MoC. In general, the reactivity of the surfaces increases following the sequence MoC < Ni(2)P(001) < alpha-Mo(2)C(001). At 300 K, thiophene does not adsorb on MoC. In contrast, Ni(2)P(001) and alpha-Mo(2)C(001) can dissociate the molecule easily. The key to establish a catalytic cycle for desulfurization is in the removal of the decomposition products of thiophene (C(x)H(y) fragments and S) from these surfaces. Our experimental and theoretical studies indicate that the rate-determining step in a hydrodesulfurization (HDS) process is the transformation of adsorbed sulfur into gaseous H(2)S. Ni(2)P is a better catalyst for HDS than Mo(2)C or MoC. The P sites in the phosphide play a complex and important role. First, the formation of Ni-P bonds produces a weak "ligand effect" (minor stabilization of the Ni 3d levels and a small Ni --> P charge transfer) that allows a high activity for the dissociation of thiophene and molecular hydrogen. Second, the number of active Ni sites present in the surface decreases due to an "ensemble effect" of P, which prevents the system from deactivation induced by high coverages of strongly bound S. Third, the P sites are not simple spectators and provide moderate bonding to the products of the decomposition of thiophene and the H adatoms necessary for hydrogenation.  相似文献   

11.
Hydrogenases are efficient biological catalysts of H(2) oxidation and production. Most of them are inhibited by O(2), and a prerequisite for their use in biotechnological applications under air is to improve their oxygen tolerance. We have previously shown that exchanging the residue at position 74 in the large subunit of the oxygen-sensitive [NiFe] hydrogenase from Desulfovibrio fructosovorans could impact the reaction of the enzyme with O(2) (Dementin, S.; J. Am. Chem. Soc. 2009, 131, 10156-10164; Liebgott, P. P.; Nat. Chem. Biol. 2010, 6, 63-70). This residue, a valine in the wild-type enzyme, located at the bottleneck of the gas channel near the active site, has here been exchanged with a cysteine. A thorough characterization using a combination of kinetic, spectroscopic (EPR, FTIR), and electrochemical studies demonstrates that the V74C mutant has features of the naturally occurring oxygen-tolerant membrane-bound hydrogenases (MBH). The mutant is functional during several minutes under O(2), has impaired H(2)-production activity, and has a weaker affinity for CO than the WT. Upon exposure to O(2), it is converted into the more easily reactivatable inactive form, Ni-B, and this inactive state reactivates about 20 times faster than in the WT enzyme. Control experiments carried out with the V74S and V74N mutants indicate that protonation of the position 74 residue is not the reason the mutants reactivate faster than the WT enzyme. The electrochemical behavior of the V74C mutant toward O(2) is intermediate between that of the WT enzyme from D. fructosovorans and the oxygen-tolerant MBH from Aquifex aeolicus.  相似文献   

12.
[NiFe] hydrogenases catalyse the reaction H2↔2H++2e. Several states of the enzyme have been observed by spectroscopic methods. Among these, the two most oxidized states, called the unready Ni–A and Ni–SU states, have been especially intriguing, because they take a much longer time to activate than the corresponding ready Ni–B and Ni–SI states. It has recently been suggested that the unready states actually contain a (hydro)peroxide bridge between the Ni and Fe ions, in contrast to the hydroxide bridge in the ready states. In this paper, we use quantum refinement (crystallographic refinement, in which the molecular mechanics [MM] calculations, normally employed to supplement the crystallographic data, are replace by more accurate quantum mechanics [QM] calculations), combined QM/MM calculations, and accurate energy estimates to study the nature of a recent oxidised crystal structure of [NiFe] hydrogenase from Desulfovibrio fructosovorans. We show that the structure contains a mixture of several states in the active site. The experimental data is best explained by structures with a hydroxide bridge but with two of the cysteine ligands (one bridging and one terminal) partly oxidised. When the terminal Cys-543 ligand is oxidised, the sulphur occupies an alternative position, observed in several crystal structures. The Glu-25 residue, that forms a hydrogen bond to this sulphur, also changes position. A peroxide ligand may exist as a minor component in the crystal and the suggested structure is supported by the calculations. We suggest that oxidised states are slow-equilibrium mixtures of structures with a peroxide bound and structures with oxidised Cys residues, and that the former can be activated by replacement of the protonated peroxide with a H2 or CO ligand, as has been observed in electrochemical experiments.  相似文献   

13.
Facile H2 heterolysis was found to be mediated by coordinatively unsaturated Cp*Ir and Cp*Rh thiolate complexes. The reaction of iridium complex is reversible, and the formation of an intermediary Ir-H/thiol complex was detected. The reversible conversion between thiolate complex+H2 and hydride complex+thiol provides an intriguing functional model of [NiFe] hydrogenase.  相似文献   

14.
H ? C Bond Cleavage in Ferrocene by Organylruthenium Complexes Cp*(Me3P)2RuCH2CMe3 ( 1 ) reacts at 85°C with ferrocene ( 2 ) by cleavage of one H? C bond in 2 to give CpFe[η5-C5H4Ru(PMe3)2Cp*] ( 3 ) (Cp = η5-C5H5; Cp* = η5-C5Me5) and neopentane. The ruthenium atom in 3 has a distorted tetrahedral geometry, the planar Cp ligands in the ferrocenyl fragment are eclipsed. Solutions of 3 in [D6]benzene or [D8]THF exhibit H? D exchange of the ferrocenyl protons. In the [D8]THF molecule only the α-deuterium atoms are exchanged. Reaction pathways for this exchange are discussed.  相似文献   

15.
16.
It was commonly thought that a molecular conductor or semiconductor should be composed of at least two components to make the conducting component in partially charged state. However, this idea became questionable by the recent report of the single-component molecular conductor [Ni(tmdt)2]1 as well as several reports about single-component molecular semiconductors such as [Ni(ptdt)2]2 and [Ni(C10H10S8)2]3. In fact, as early as 1985, [Ni(dmit)2] as a by-product in synthesizing TTF[Ni(dmit…  相似文献   

17.
18.
The first examples of CT salts based on [Ni(dtcr)2] dianions (1) (dtcr = dithiocroconate = 4,5-disulfanylcyclopent-4-ene-1,2,3-trionate), (TTF)2[Ni(dtcr)2] (TTF = tetrathiafulvalene) (2) and (ET)2[Ni(dtcr)2] [ET = bis(ethylenedithio)tetrathiafulvalene] (3) are reported. The redox-active dianion 1, containing oxo-groups in the periphery of the molecule, has been selected to investigate the role of the oxo-groups in promoting intermolecular interactions and hopefully their conducting properties. The salts 2 and 3 have been prepared by electrocrystallisation methods and 3 shows a semi-metallic behaviour: sigma = 1 x 10(-3) omega(-1) cm(-1) at room temperature, with a low activation energy 60 meV, while crystals of 2 were unsuitable for conductivity measurements. The X-ray structural characterisation shows an alternate dianion-(cation)2 stacking and the capability of the oxo-groups to promote interstack contacts. In 2, the TTF donors are present as face-to-face dimers of monocations (D2)2+. The stacking arrangement is different in 3, where ET monocations stack along two directions ([110] and [110]) in the same manner, with the repeating sequence (ET)-(ET)-[Ni(dtcr)2]-(ET)-(ET) and are almost parallel to each other, with interplanar distances of 3.575 angstroms. Both structures are built on a dianion and two donor molecules, each one with a charge of +1. Diffuse reflectance combined with vibrational spectra complement structural results well. Crystal data: both 2 and 3 crystallise in the monoclinic space group P2(1)/c with a = 8.6340(8) angstroms, b = 21.586(2) angstroms, c = 7.5960(8) angstroms, beta = 95.625(11) degrees and V = 1408.9(2) angstroms3 for 2 and with a = 9.3700(7), b = 7.4410(6), c = 28.278(2) angstroms, beta = 99.039(6) degrees, V = 1947.1(3) angstroms3 for 3.  相似文献   

19.
In the catalytic cycle of [NiFe] hydrogenase the paramagnetic Ni-C intermediate is of key importance, since it is believed to carry the substrate hydrogen, albeit in a yet unknown geometry. Upon illumination at low temperatures, Ni-C is converted to the so-called Ni-L state with markedly different spectroscopic parameters. It is suspected that Ni-L has lost the "substrate hydrogen". In this work, both paramagnetic states have been generated in single crystals obtained from the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Evaluation of the orientation dependent spectra yielded the magnitudes of the g tensors and their orientations in the crystal axes system for both Ni-C and Ni-L. The g tensors could further be related to the atomic structure by comparison with the X-ray crystallographic structure of the reduced enzyme. Although the g tensor magnitudes of Ni-C and Ni-L are quite different, the orientations of the resulting g tensors are very similar but differ from those obtained earlier for Ni-A and Ni-B (Trofanchuk et al. J. Biol. Inorg. Chem. 2000, 5, 36-44). The g tensors were also calculated by density functional theory (DFT) methods using various structural models of the active site. The calculated g tensor of Ni-C is, concerning magnitudes and orientation, in good agreement with the experimental one for a formal Ni(III) oxidation state with a hydride (H(-)) bridge between the Ni and the Fe atom. Satisfying agreement is obtained for the Ni-L state when a formal Ni(I) oxidation state is assumed for this species with a proton (H(+)) removed from the bridge between the nickel and the iron atom.  相似文献   

20.
A PS-Fe(2)S(2) molecular dyad 1a directly anchoring a platinum(II) alkynyl complex to a Fe(2)S(2) active site of a [FeFe] H(2)ase mimic, and an intermolecular system of its reference complexes 1b and 2, have been successfully constructed. Time-dependence of H(2) evolution shows that PS-Fe(2)S(2)1a as well as complex 2 with 1b can produce H(2) in the presence of a proton source and sacrificial donor under visible light irradiation. Spectroscopic and electrochemical studies on the electron transfer event reveal that the reduced Fe(I)Fe(0) species generated by the first electron transfer from the excited platinum(II) complex to the Fe(2)S(2) active site in PS-Fe(2)S(2)1a and complex 2 with 1b is essential for photochemical H(2) evolution, while the second electron transfer from the excited platinum(II) complex to the protonated Fe(I)Fe(0) species is thermodynamically unfeasible, which might be an obstacle for the relatively small amount of H(2) obtained by PS-Fe(2)S(2) molecular dyads reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号