首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six new metal-organic coordination networks based on linking unit 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (L(1)) or 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L(3)) and inorganic Cu(II), Cd(II), and Co(II) salts have been prepared and structurally characterized by single-crystal X-ray analysis. Using L(1) to react with three different Cu(II) salts, Cu(OAc)(2).H(2)O, Cu(NO(3))(2).3H(2)O, and CuSO(4).5H(2)O, respectively, two different one-dimensional (1-D) coordination polymers, [[Cu(2)L(1)(mu-OAc)(4)](CHCl(3))(2)](n) (1) [triclinic, space group P1, a = 7.416(3) A, b = 8.207(3) A, c = 14.137(5) A, alpha = 100.333(7) degrees, beta = 105.013(6) degrees, gamma = 94.547(6) degrees, Z = 1] and [[CuL(1)(NO(3))(2)](CHCl(3))(0.5)](n) (2) [monoclinic, space group C2/c, a = 28.070(8) A, b = 9.289(3) A, c = 15.235(4) A, beta = 113.537(5) degrees, Z = 8], and a chiral 3-D open framework, [[CuL(1)(H(2)O)(SO(4))](H(2)O)(2)](n) (3) [orthorhombic, space group P2(1)2(1)2(1), a = 5.509(2) A, b = 10.545(4) A, c = 29.399(11) A, Z = 4], were obtained. Reaction of L(1) and Cd(ClO(4))(2).6H(2)O or Co(ClO(4))(2).6H(2)O, in the presence of NH(4)SCN, yielded another 3-D open framework, [[CdL(1)(NCS)(2)](CH(3)OH)(1.5)](n) (4) [monoclinic, space group C2/c, a = 28.408(10) A, b = 9.997(5) A, c = 7.358(4) A, beta = 99.013(8) degrees, Z = 4], or a 2-D network, [[Co(L(1)())(2)(NCS)(2)](H(2)O)(2.5)](n) (5) [orthorhombic, space group Pnna, a = 22.210(5) A, b = 12.899(3) A, c = 20.232(4) A, Z = 4]. When L(1) was replaced by L(3) to react with Co(ClO(4))(2).6H(2)O and NH(4)SCN, another 2-D coordination polymer, [Co(L(3))(2)(NCS)(2)](n) (6) [monoclinic, space group P2(1)/c, a = 8.120(3) A, b = 9.829(4) A, c = 17.453(6) A, beta = 103.307(6) degrees, Z = 2], was constructed. These results indicate that the nature of the ligands, metal centers, or counteranions plays the critical role in construction of these novel coordination polymers. The interesting porous natures of two 3-D open frameworks 3 and 4 were investigated by TGA and XPRD techniques, and the magnetic properties of the Cu(II) and Co(II) complexes were studied by variable-temperature magnetic susceptibility and magnetization measurements.  相似文献   

2.
Complex [Ag(tpba)N(3)] (1) was obtained by reaction of novel tripodal ligand N,N',N"-tris(pyrid-3-ylmethyl)-1,3,5-benzenetricarboxamide (TPBA) with [Ag(NH(3))(2)]N(3). While the reactions between 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (TITMB) and silver(I) salts with different anions and solvent systems give six complexes: [Ag(3)(titmb)(2)](N(3))(3).CH(3)OH.4 H(2)O (2), [Ag(3)(titmb)(2)](CF(3)SO(3))(2)(OH).5 H(2)O (3), [Ag(3)(titmb)(2)][Ag(NO(3))(3)]NO(3).H(2)O (4), [Ag(3)(titmb)(2)(py)](NO(3))(3).H(2)O (py=pyridine) (5), [Ag(3)(titmb)(2)(py)](ClO(4))(3) (6), and [Ag(3)(titmb)(2)](ClO(4))(3).CHCl(3) (7). The structures of these complexes were determined by X-ray crystallography. The results of structural analysis of complexes 1 and 2, with the same azide anion but different ligands, revealed that 1 is a twofold interpenetrated 3D framework with interlocked cage-like moieties, while 2 is a M(3)L(2) type cage-like complex with a methanol molecule inside the cage. Entirely different structure and topology between 1 and 2 indicates that the nature of organic ligands affected the structures of assemblies greatly. While in the cases of complexes 2-7 with flexible tripodal ligand TITMB, they are all discrete M(3)L(2) type cages. The results indicate that the framework of these complexes is predominated by the nature of the organic ligand and geometric need of the metal ions, but not influenced greatly by the anions and solvents. It is interesting that there is a divalent anion [Ag(NO(3))(3)](2-) inside the cage 4 and an anion of ClO(4)(-) or NO(3)(-) spontaneously encapsulated within the cage of complexes 5, 6 and 7.  相似文献   

3.
Wang QM  Mak TC 《Inorganic chemistry》2003,42(5):1637-1643
The first successful attempt to construct supramolecular entities via incorporation of bifunctional exodentate ligands into the silver acetylide system is reported. Coordination assembly with nitrogen-donor spacers led to the formation of five distinct supramolecular complexes, namely [(Ag(2)C(2))(AgCF(3)CO(2))(4)(pyz)(2)](n) (1), [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(CF(3)CO(2))(4)(DabcoH)(4)(H(2)O)(1.5)].H(2)O (2), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(CF(3)CO(2))(bpaH)](n)() (3), [(Ag(2)C(2))(AgCF(3)CO(2))(8)(bpa)(4)](n) (4), and [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(bppz)(2)(H(2)O)](n) (5) (pyz = pyrazine; Dabco = 1,4-diazabicyclo[2.2.2]octane; bpa = 1,2-bis(4-pyridyl)ethane; bppz = 2,3-bis(2-pyridyl)pyrazine). Complex 1 is a three-dimensional framework composed of silver columns cross-linked by pyrazine bridges, whereas 2 contains a discrete supermolecule whose core is a Ag(14) double cage that is completely surrounded by trifluoroacetate, aqua, and terminal monoprotonated Dabco ligands. Complex 3 has a branched-tree architecture with one terminal of the bpa ligand attached to the silver backbone and the other exposed and protonated. In 4, neutral decanuclear [(Ag(2)C(2))(AgCF(3)CO(2))(8)] units are interlinked by bpa spacers adopting both gauche and anti conformations to generate a layer structure. Another two-dimensional network was formed with bppz serving as an angular bridging ligand in 5, in which the building unit is a silver quadruple cage containing 24 silver atoms.  相似文献   

4.
Using a series flexible thioether ligands, 4-(2-pyridylmethylthio)benzoic acid (HL(1)), 4-(4-pyridylmethylthio)benzoic acid (HL(2)) and 4-(3-pyridylmethylthio)benzoic acid (HL(3)), a 1D infinite chain [Zn(3)(L(1))(6)](n) (), a 2D interpenetrating sheet [Zn(L(2))(2)](n) (), and a chiral 3D framework [Zn(L(3))(2)H(2)O](n) () were obtained. Luminescent properties of these compounds were also studied.  相似文献   

5.
Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C(6)H(4)-NHN=C{C(=O)CH(3)}(2) bearing a substituent in the ortho-position [X = OH (H(2)L(1)) 1, AsO(3)H(2) (H(3)L(2)) 2, Cl (HL(3)) 3, SO(3)H (H(2)L(4)) 4, COOCH(3) (HL(5)) 5, COOH (H(2)L(6)) 6, NO(2) (HL(7)) 7 or H (HL(8)) 8] lead to a variety of complexes including the monomeric [CuL(4)(H(2)O)(2)]·H(2)O 10, [CuL(4)(H(2)O)(2)] 11 and [Cu(HL(4))(2)(H(2)O)(4)] 12, the dimeric [Cu(2)(H(2)O)(2)(μ-HL(2))(2)] 9 and the polymeric [Cu(μ-L(6))](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H(2)O)(4){NCNC(NH(2))(2)}(2)](HL(4))(2)·6H(2)O 14 and the heteroligand polymer [Cu(μ-L(4))(im)](n)15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, (1)H and (13)C NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L(8))(H(2)O)]·H(2)O, [Cu(L(1))(H(2)O)(2)]·H(2)O and [Cu(L(4))(H(2)O)(2)]·H(2)O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H(2)O(2)) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H(2)O (total yields of ca. 20% with TONs up to 566), under mild conditions.  相似文献   

6.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

7.
The reaction of a potential mono(nucleobase) model adduct of cisplatin, cis-[Pt(NH(3))(2)(1-MeC-N3)(H(2)O)](2+) (6; 1-MeC: 1-methylcytosine), with the electrophile [Pd(en)(H(2)O)(2)](2+) (en: ethylenediamine) at pH approximately 6 yields a kinetic product X which is likely to be a dinuclear Pt,Pd complex containing 1-MeC(-)-N3,N4 and OH bridges, namely cis-[Pt(NH(3))(2)(1-MeC(-)-N3,N4)(OH)Pd(en)](2+). Upon addition of excess Ag(+) ions, conversion takes place to form a thermodynamic product, which, according to (1)H NMR spectroscopy and X-ray crystallography, is dominated by a mu-NH(2) bridge between the Pt(II) and Pd(II) centers. X-ray crystallography reveals that the compound crystallizes out of solution as a dodecanuclear complex containing four Pt(II), four Pd(II), and four Ag(+) entities: [{Pt(2)(1-MeC(-)-N3,N4)(2)(NH(3))(2)(NH(2))(2)(OH)Pd(2)(en)(2)Ag}(2){Ag(H(2)O)}(2)](NO(3))(10) 6 H(2)O (10) is composed of a roughly planar array of the 12 metal ions, in which the metal ions are interconnected by mu-NH(2) groups (between Pt and Pd centers), mu-OH groups (between pairs of Pt atoms), and metal-metal donor bonds (Pt-->Ag, Pd-->Ag). The four 1-methylcytosinato ligands, which are stacked pairwise, as well as the four NH(3) ligands and parts of the en rings, are approximately perpendicular to the metal plane. Two of the four Ag ions (Ag2, Ag2') of 10 are labile in solution and show the expected behavior of Ag(+) ions in water, that is, they are readily precipitated as AgCl by Cl(-) ions. The resulting pentanuclear complex [Pt(2)Pd(2)Ag(1-MeC(-))(2)(NH(2))(2)(OH)(NH(3))(2)(en)(2)](NO(3))(4)7 H(2)O (11) largely maintains the structural features of one half of 10. The other two Ag(+) ions (Ag1, Ag1') of 10 are remarkably unreactive toward excess NaCl. In fact, the pentanuclear complex [Pt(2)Pd(2)AgCl(1-MeC(-))(2)(NH(2))(2)(OH)(NH(3))(2)(en)(2)](NO(3))(3)4.5 H(2)O (12), obtained from 10 with excess NaCl, displays a Cl(-) anion bound to the Ag center (2.459(3) A) and is thus a rare case of a crystallized "AgCl molecule".  相似文献   

8.
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of metal complexes with two structurally related ligands, 9-acridinecarboxylic acid (HL(1)) and 4-quinolinecarboxylate acid (HL(2)), [Cu(2)(mu(2)-OMe)(2)(L(1))(2)(H(2)O)(0.69)](n) 1, [Cu(2)(L(1))(4)(CH(3)OH)(2)] 2, [Cu(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 3, [Mn(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 4, [Co(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 5, [Cu(L(2))(2)](n) 6, [Mn(L(2))(2)(H(2)O)](n) 7, and [Co(L(2))(2)(H(2)O)](n) 8. 1 is a three-dimensional (3D) polymer with an interpenetrating NbO type network showing one-dimensional (1D) channels, whereas 2 and 3 take bi- and trinuclear structures, respectively, because of the differences in basicity of the reaction systems in preparing the three complexes. 4 and 5 have trinuclear structures similar to that of 3. In 1-5, ligand L(1) performs different coordination modes with N,O-bridging in 1 and O,O'-bridging in 2-5, and the metal ions also show different coordination geometries: square planar in 1, square pyramidal in 2, and octahedral in 3-5. 6 has a two-dimensional structure containing (4,4) grids in which L(2) adopts the N,O-bridging mode and the Cu(II) center takes square planar geometry. 7 and 8 are isostructural complexes showing 1D chain structures, with L(2) adopting the O,O-bridging mode. In addition, the intermolecular O-H...N hydrogen bonds and pi-pi stacking interactions further extend the complexes (except 1 and 6), forming 3D structures. The magnetic properties of 2-7 have been investigated and discussed in detail.  相似文献   

9.
A series of six Ag(I) and Zn(II) coordination polymers, namely, [Ag(2)(ndc)](∞) (1), {[Zn(ndc)(H(2)O)](H(2)O)}(∞) (2), {[Ag(2)(ndc)(4bpy)(2)][Ag(4bpy)(H(2)O)](ClO(4))(H(2)O)(2)}(∞) (3), [Zn(5)(ndc)(4)(4bpy)(2)(μ(3)-OH)(2)](∞) (4), {[Ag(ndc)(abp)][Ag(abp)](H(2)O)(3)}(∞) (5), and {[Zn(2)(ndc)(2)(abp)(H(2)O)(2)](H(2)O)(2)}(∞) (6), have been prepared by using 2,3-naphthalenedicarboxylic acid (H(2)ndc), an analogue of 1,2-benzenedicarboxylic acid (H(2)bdc), and different 4,4'-bipyridyl-like bridging co-ligands 4,4'-bipyridine (4bpy) and trans-4,4'-azobis(pyridine) (abp). The initial complexes 1 and 2 display the unusual two-dimensional (2-D) five-connected (4(8).6(2)) and the 2-D three-connected (4.8(2)) coordination networks, respectively. When two comparable rod-like linkers 4bpy and abp (with different N,N'-donor separations of the molecular backbones of ca. 7 and 9 ?) are further introduced, two one-dimensional (1-D) complexes 3 and 5, a three-dimensional (3-D) coordination framework 4 with (4(3))(4(3).6(3))(4(3).6(5).8(2))(4(4).6(4).8(2))(4(10).6(5)) topology and a 2-D 6(3) layered coordination polymer 6 are constructed. A structural comparison of these complexes with those based on the structurally related bdc ligand suggests that the extended π-conjugated system of ndc with different electronic nature and steric bulk play an important role in constructing the supramolecular architectures for 1-6, which are also regulated by different bridging N-donor co-ligands and metal ions. Moreover, complexes 1-6 show strong solid-state luminescence emissions at room temperature that mainly originate from the intraligand transitions of ndc.  相似文献   

10.
Hu TL  Li JR  Liu CS  Shi XS  Zhou JN  Bu XH  Ribas J 《Inorganic chemistry》2006,45(1):162-173
Seven new Cu(II) complexes based on a binuclear planar unit [Cu(mu-L(1))](2), [[Cu(mu-L(1))(NO(3))(H(2)O)](2) (1), [Cu(mu-L(1))(HL(1))(ClO(4))](2) (2), [Cu(4)(mu-L(1))(6)(NO(3))(2)] (3), [Cu(4)(mu-L(1))(6)(L(1))(2)] (4), [Cu(4)(mu-L(1))(6)(mu-L(2))](n) (5), [Cu(4)(mu-L(1))(6)(mu-L(3))](n) (6), [[Cu(4)(mu-L(1))(4)(mu-L(4))(2)](H(2)O)(3)](n) (7) (HL(1) = 3-(2-pyridyl)pyrazole, L(2) = 1,8-naphthalenedicarboxylate, L(3) = terephthalate, L(4) = 2,6-pyridinedicarboxylate)}, have been synthesized and characterized by elemental analysis, IR, and X-ray diffraction. In 1 and 2, the Cu(II) centers are linked by deprotonated pyrazolyl groups to form dinuclear structures. 3 and 4 have similar gridlike tetranuclear structures in which two additional deprotonated L(1) ligands bridge two [Cu(mu-L(1))](2) units perpendicularly. 5 and 6 consist of similar one-dimensional (1-D) chains in which gridlike tetranuclear copper(II) units similar to that of 3 are further linked by L(2) or L(3) ligands, respectively. And, in 7, L(4) ligands link [Cu(mu-L(1))](2) binuclear units to form a tetranuclear gridlike structure in chelating/bridging mode and simultaneously bridge the tetranuclear units to form a 1-D chain. The magnetic properties of all complexes were studied by variable-temperature magnetic susceptibility and magnetization measurements. The obtained parameters of J range from -33.1 to -211 cm(-1), indicating very strong antiferromagnetic coupling between Cu(II) ions. The main factor that affects the |J| parameter is the geometry of the Cu(N(2))(2)Cu entity. From the magnetic point of view, 1 and 2 feature "pure" dinuclear, 3 and 5 tetranuclear, and 4, 6, and 7 pseudodinuclear moieties.  相似文献   

11.
Three novel silver(I) complexes with benzopyrene derivatives were synthesized and characterized in this paper. Treatment of AgClO(4)*H(2)O with 7-methylbenzo[a]pyrene (L(1)) afforded [Ag(2)(L(1))(toluene)(0.5)(ClO(4))(2)](n)() (1) which exhibits a 2-D sheet structure with double-stranded helical motifs. Reaction of AgCF(3)SO(3) with dibenzo[b,def ]chrysene (L(2)) gave rise to an unprecedented cocrystallization structure, ([Ag(2)(L(2))(CF(3)SO(3))(2)][Ag(2)(toluene)(2)(CF(3)SO(3))(2)])(n)() (2), formed by a 2-D neutral lamellar polymer and a 1-D neutral rodlike one. The ligand benzo[e]pyrene (L(3)) coordinated to silver(I) ions generating a closed triple-decker tetranuclear complex [Ag(4)(L(3))(4)(p-xylene)(ClO(4))(4)] (3) which can be regarded as a stacking polymer owing to existing intermolecular pi-pi stack interactions. The structural diversity of the silver(I) coordination polymers with polycyclic aromatic hydrocarbons is not only related to the stacking patterns of free polycyclic aromatic hydrocarbons in the crystalline state, but also the geometric shapes of the molecules for these free ligands. In addition, the coordination of solvents to metal ions plays a crucial role in the formation of the unprecedented coordination polymeric architectures. The ESR spectroscopic results, conductivity, and synthesis properties are also discussed.  相似文献   

12.
Four succinato-bridged complexes of copper(II) have been synthesized. Complex 1, [Cu(2)(mu-OH(2))(2)L(bpy)(2)(NO(3))(2)](n) and 2, [Cu(2)(mu-OH(2))(2)L(phen)(2)(NO(3))(2)](n)(bpy = 2,2[prime or minute]-bipyridine; phen = 1,10-phenanthroline and LH(2)= succinic acid) exhibit 1D coordination polymer structures where both the nitrate ions are directly linked to the copper(ii) producing synthons in a 2D sheet. A novel 2D grid-like network, ([Cu(4)L(2)(bpy)(4)(H(2)O)(2)](ClO(4))(4)(H(2)O))n3, is obtained upon changing the nitrate by perchlorate anion in complex 1, where the channels are occupied by the anions. On changing the nitrate by tetrafluoroborate anion in complex 2, a novel octanuclear complex, [Cu(8)L(4)(phen)(12)](BF(4))(8).8H(2)O 4, is isolated. The coligand bpy and phen in these complexes show face-to-face (in 1,2,3,4) or edge-to-face (in 4 )pi-pi interactions forming the multidimensional supramolecular architectures. Interestingly, the appearance of edge-to-face pi-pi interactions in complex facilitates the formation of discrete octanuclear entities. Variable-temperature (300-2 K) magnetic measurements of complexes have been done. Complexes 1 and 2 show very weak antiferromagnetic (OOC-CH(2)-CH(2)-COO) and ferromagnetic coupling (mu-H(2)O). Complex 3 also shows antiferromagnetic (syn-syn mu-OCO), and ferromagnetic coupling (mu-O of the -COO group). Complex 4 with two types (syn-syn and syn-anti) of binding modes of the carboxylate group shows strong antiferromagnetic interaction.  相似文献   

13.
Several new Cu(II) derivatives of the 1,3-bis(dimethylamino)-2-propanolato (bdmap) ligand with formula [Cu(2)(bdmap)(acac)(NH(3))(3)(MeOH)](ClO(4))(2), [Cu(2)(bdmap)(NO(2))(3)(H(2)O)](4) and [Cu(2)(bdmap)(OH)(ox)(0.5)(H(2)O)(2)](n)(ClO(4))(n)xnH(2)O were synthesized and characterized both structurally and magnetically. Dinuclear compound crystallizes in the monoclinic system, space group P2(1)/c, octanuclear compound crystallizes in the triclinic space group P1 and the 1-D alternating system crystallizes in the monoclinic system, space group P2/n. Magnetic analysis indicates strong antiferromagnetic coupling for all derivatives, mainly due to the interaction through the alkoxo O-atom of the bdmap ligand. The effect on the magnetic behaviour of the additional bridging ligands is analysed.  相似文献   

14.
Wu CD  Lu CZ  Yang WB  Zhuang HH  Huang JS 《Inorganic chemistry》2002,41(12):3302-3307
Three novel 5-aminoisophthalic acid (AIP) bridged polymers [Co(C(8)NH(5)O(4))(H(2)O)](n)() (1), [Ni(C(8)NH(5)O(4))(H(2)O)(2)](n)() (2), and [Zn(C(8)NH(5)O(4))(H(2)O)](n)() (3) were synthesized by hydrothermal reactions and characterized by IR, Raman, elemental analysis, ESR, and magnetic measurements. X-ray single-crystal analyses were carried out for [Co(C(8)NH(5)O(4))(H(2)O)](n)() (1), which crystallizes in the triclinic system, space group P1 macro, with a = 6.477(1) A, b = 7.130(1) A, c = 9.826(2) A, alpha = 108.9(1) degrees, beta = 93.97(3) degrees, gamma = 98.82(3) degrees, and Z = 2; for [Ni(C(8)NH(5)O(4))(H(2)O)(2)](n)() (2), in the triclinic system, space group P1 macro, a = 6.425(1) A, b = 8.115(2) A, c = 10.146(2) A, alpha = 113.09(3)(o), beta = 99.64(3)(o), gamma = 98.90(3)(o), and Z = 2; and for [Zn(C(8)NH(5)O(4))(H(2)O)](n)() (3), in the monoclinic system, space group P2(1)/n, a = 9.044(1) A, b = 8.264(1) A, c = 11.646(1) A, beta = 100.77(1) degrees, and Z = 4. The single X-ray diffraction studies reveal that 1 consists of an infinite honeycomb layer formed by four crystallographically independent motifs packed alternatively together; 2 consists of an infinite neutral railroad-like linear polymer, and 3 consists of infinite layers of alternating four-coordinated Zn(II) cations and AIP ligands. Finally, they are all packed into beautiful three-dimensional frameworks through complicated hydrogen bonding. Antiferromagnetic and ferromagnetic behaviors were observed for 1 and 2 from the magnetic measurements.  相似文献   

15.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

16.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

17.
Han Y  Li X  Li L  Ma C  Shen Z  Song Y  You X 《Inorganic chemistry》2010,49(23):10781-10787
A series of 3-D lanthanide porous coordination polymers, [Ln(6)(BDC)(9)(DMF)(6)(H(2)O)(3)·3DMF](n) [Ln = La, 1; Ce, 2; Nd, 3], [Ln(2)(BDC)(3)(DMF)(2)(H(2)O)(2)](n) [Ln = Y, 4; Dy, 5; Eu, 6], [Ln(2)(ADB)(3)(DMSO)(4)·6DMSO·8H(2)O](n) [Ln = Ce, 7; Sm, 8; Eu, 9; Gd, 10], {[Ce(3)(ADB)(3)(HADB)(3)]·30DMSO·29H(2)O}(n) (11), and [Ce(2)(ADB)(3)(H(2)O)(3)](n) (12) (H(2)BDC = benzene-1,4-dicarboxylic acid and H(2)ADB = 4,4'-azodibenzoic acid), have been synthesized and characterized. In 1-3, the adjacent Ln(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), that constructed a 3-D framework with 4 × 7 ? rhombic channels. In 4-6, the dimeric Ln(III) ions are interlinked to yield scaffolds with 3-D interconnecting tunnels. Compounds 7-10 are all 3-D interpenetrating structures with the CaB6-type topology structure. Compound 11 is constructed by ADB spacers and trinulcear Ce nodes with a NaCl-type topology structure and a 1.9-nm open channel system. In 12, the adjacent Ce(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), and give rise to a 3-D framework. Moreover, 6 exhibits characteristic red luminescence properties of Eu(III) complexes. The magnetic susceptibilities, over a temperature range of 1.8-300 K, of 3, 6, and 7 have also been investigated; the results show paramagnetic properties.  相似文献   

18.
Wei QH  Yin GQ  Zhang LY  Shi LX  Mao ZW  Chen ZN 《Inorganic chemistry》2004,43(11):3484-3491
A series of Ag(I)-Cu(I) heteronuclear alkynyl complexes were prepared by reaction of polymeric (MCCC(6)H(4)R-4)(n)() (M = Cu(I) or Ag(I); R = H, CH(3), OCH(3), NO(2), COCH(3)) with [M'(2)(mu-Ph(2)PXPPh(2))(2)(MeCN)(2)](ClO(4))(2) (M' = Ag(I) or Cu(I); X = NH or CH(2)). Heterohexanuclear complexes [Ag(4)Cu(2)(mu-Ph(2)PNHPPh(2))(4)(CCC(6)H(4)R-4)(4)](ClO(4))(2) (R = H, 1; CH(3), 2) were afforded when X = NH, and heterooctanuclear complexes [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)R-4)(6)(MeCN)](ClO(4))(2) (R = H, 3; CH(3), 4; OCH(3), 5; NO(2), 6) were isolated when X = CH(2). Self-assembly reaction between (MCCC(6)H(4)COCH(3)-4)(n) and [M'(2)(mu-Ph(2)PCH(2)PPh(2))(2)(MeCN)(2)](ClO(4))(2), however, gave heterohexadecanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](2)(ClO(4))(4) (7). The heterohexanuclear complexes 1 and 2 show a bicapped cubic skeleton (Ag(4)Cu(2)C(4)) consisting of four Ag(I) and two Cu(I) atoms and four acetylide C donors. The heterooctanuclear complexes 3-6 exhibit a waterwheel-like structure that can be regarded as two Ag(3)Cu(CCC(6)H(5))(3) components put together by three bridging Ph(2)PCH(2)PPh(2) ligands. The heterohexadecanuclear complex 7 can be viewed as a dimer of heterooctanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](ClO(4))(2) through the silver and acetyl oxygen (Ag-O = 2.534 (4) A) linkage between two waterwheel-like Ag(6)Cu(2) units. All of the complexes show intense luminescence in the solid states and in fluid solutions. The microsecond scale of lifetimes in the solid state at 298 K reveals that the emission is phosphorescent in nature. The emissive state in compounds 1-5 is likely derived from a (3)LMCT (CCC(6)H(4)R-4 --> Ag(4)Cu(2) or Ag(6)Cu(2)) transition, mixed with a metal cluster-centered (d --> s) excited state. The lowest lying excited state in compounds 6 and 7 containing electron-deficient 4-nitrophenylacetylide and 4-acetylphenylacetylide, respectively, however, is likely dominated by an intraligand (3)[pi --> pi] character.  相似文献   

19.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

20.
The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ? trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号