首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将20 kHz连续声信号作为刺激信号,测试了厦门某海湾圈养的两只瓶鼻海豚对该信号的行为变化。通过对比信号发射期与间歇期海豚相对声源的水面距离、露出水面的次数以及水下发出的click定位声信号的数目等变化,判断发射信号对海豚行为的影响。给出了瓶鼻海豚对测试信号产生躲避行为的声压级门限(154±2 dB re 1μPa,rms),并与鼠海豚的躲避声压门限级进行了对比。结果表明:信号发射期,瓶鼻海豚移离了声源位置,增加了露出水面的次数,水下发出click声信号的次数明显减少。因此,瓶鼻海豚对20kHz连续信号产生了行为改变。   相似文献   

2.
At present, the fundamental frequencies of signals of most commercially available acoustic alarms to deter small cetaceans are below 20 kHz, but it is not well ascertained whether higher frequencies have a deterrent effect on bottlenose dolphins (Tursiops truncatus). Two captive bottlenose dolphins housed in a floating pen were subjected to a continuous pure tone at 50 kHz with a source level of 160 ± 2 dB (re 1 μPa, rms). The behavioral responses of dolphins were judged by comparing surfacing distance relative to the sound source, number of surfacings, and number of echolocation clicks produced, during forty 15 min baseline periods with forty 15 min test periods (four sessions per day, 40 sessions in total). On all 10 study days, surfacing distance and the number of surfacings increased while click production decreased during broadcasts of test sound. The avoidance threshold sound pressure level for a continuous 50 kHz tone for the bottlenose dolphins, in the context of this study, was estimated to be 144 ± 2 dB (re 1 μPa, rms). The results indicated that a continuous 50 kHz tonal signal can deter bottlenose dolphins from an area.  相似文献   

3.
Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.  相似文献   

4.
Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.  相似文献   

5.
魏翀  许肖梅  张宇  牛富强 《声学学报》2014,39(4):452-458
根据频率特性对圈养宽吻海豚(Tursiops truncatus)在自由游动和训练两种实验条件下的声通讯信号进行分类,并利用双尾t检验统计分析方法对两种条件下的信号声谱参数进行统计比较。结果显示,宽吻海豚在自由状态下通讯信号的种类多并以正弦型为主,而训练期间的通讯信号则大多数为上扫频类。此外,统计分析表明起始频率不能反映这两种状态的不同(p=0.22)。结束频率、最小频率、最大频率、频率变化量、拐点数、环形数、阶数、波形数和周期等则显示了两种状态显著的差异性(p<0.05)。结果为今后海豚声行为研究提供一定的科学参考和基础。   相似文献   

6.
Whistles from five delphinid species in the western Mediterranean Sea (Stenella coeruleoalba, Grampus griseus, Delphinus delphis, Tursiops truncatus, Globicephala melas) were taken from GREC sound archives. FFT contours (window size 512, Hanning, sampling frequency 44.1 kHz) were extracted with custom developed Matlab software: 277 samples of striped dolphins (Sc), 158 whistles of Risso’s dolphins (Gg), 120 of common dolphins (Dd), 76 of bottlenose dolphins (Tt), and 66 of pilot whales (Gm) were selected. Seafox software extracted 15 variables from the digitized contours, including: duration, initial, final, maximal and minimal frequency slopes, frequency range, number of frequency extrema, beginning, ending, maximal and minimal frequencies, presence of harmonics. Four of five species were significantly different (Mann-Whitney test) for average durations (respectively 0.73, 0.65, 0.47 and 0.89 s for Sc, Gg, Dd, Gm) while the average duration of bottlenose dolphins was 0.71 s. Frequency ranges (respectively 7.3, 6.3, 4.6, 3.2 and 6.3 kHz) were significantly different for all species pairs, with the exception of bottlenose and Risso’s dolphins. From a global point of view, pilot whale calls were the most distinct, with 43 significant pair-wise tests out of a total of 52, followed by the common dolphins. Risso’s dolphins were closest to other species whistles. A CART classification method achieved a global classification rate of 62.9%.  相似文献   

7.
通过长期记录室内水池环境下两只印太瓶鼻海豚通讯信号,并与海湾自然环境下同样的两只海豚所发出的通讯信号进行比较分析,从信号类型、声谱特征等方面研究生活环境变化下瓶鼻海豚通讯信号的差异性。结果表明,生活环境的差异,会改变瓶鼻海豚通讯信号。海湾自然环境下,瓶鼻海豚通讯信号以正弦型信号为主;而室内水池环境下,上扫型信号比例明显增多,而正弦型信号减少。两种环境下,瓶鼻海豚通讯信号在持续时间、拐点数、起始频率、结束频率、最小频率、最大频率等存在显著性差异(p<0.05),但信号的频率变化量相近(p=0.29)。结果为提高海豚通讯信号认知和增强海豚生物行为研究提供一定的科学参考,同时也为仿生隐蔽通信提供技术支撑。   相似文献   

8.
It is difficult to attribute underwater animal sounds to the individuals producing them. This paper presents a system developed to solve this problem for dolphins by linking acoustic locations of the sounds of captive bottlenose dolphins with an overhead video image. A time-delay beamforming algorithm localized dolphin sounds obtained from an array of hydrophones dispersed around a lagoon. The localized positions of vocalizing dolphins were projected onto video images. The performance of the system was measured for artificial calibration signals as well as for dolphin sounds. The performance of the system for calibration signals was analyzed in terms of acoustic localization error, video projection error, and combined acoustic localization and video error. The 95% confidence bounds for these were 1.5, 2.1, and 2.1 m, respectively. Performance of the system was analyzed for three types of dolphin sounds: echolocation clicks, whistles, and burst-pulsed sounds. The mean errors for these were 0.8, 1.3, and 1.3 m, respectively. The 95% confidence bound for all vocalizations was 2.8 m, roughly the length of an adult bottlenose dolphin. This system represents a significant advance for studying the function of vocalizations of marine animals in relation to their context, as the sounds can be identified to the vocalizing dolphin and linked to its concurrent behavior.  相似文献   

9.
Field recordings of echolocation signals produced by Heaviside's dolphins (Cephalorhynchus heavisidii) were made off the coast of South Africa using a hydrophone array system. The system consisted of three hydrophones and an A-tag (miniature stereo acoustic data-logger). The mean centroid frequency was 125 kHz, with a -3 dB bandwidth of 15 kHz and -10 dB duration of 74 μs. The mean back-calculated apparent source level was 173 dB re 1 μPa(p.-p.). These characteristics are very similar to those found in other Cephalorhynchus species, and such narrow-band high-frequency echolocation clicks appear to be a defining characteristic of the Cephalorhynchus genus. Click bursts with very short inter-click intervals (up to 2 ms) were also recorded, which produced the "cry" sound reported in other Cephalorhynchus species. Since inter-click intervals correlated positively to click duration and negatively to bandwidth, Heaviside's dolphins may adjust their click duration and bandwidth based on detection range. The bimodal distribution of the peak frequency and stable bimodal peaks in spectra of individual click suggest a slight asymmetry in the click production mechanism.  相似文献   

10.
11.
12.
Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was used to record the whistles of bottlenose dolphins in a tropical shallow-water environment with high ambient noise levels. Acoustic localization techniques were used to estimate the source levels and energy content of individual whistles. Bottlenose dolphins produced whistles with mean source levels of 146.7 ± 6.2 dB re. 1 μPa(RMS). These were lower than source levels estimated for a population inhabiting the quieter Moray Firth, indicating that dolphins do not necessarily compensate for the high noise levels found in noisy tropical habitats by increasing their source level. Combined with measured transmission loss and noise levels, these source levels provided estimated median communication ranges of 750 m and maximum communication ranges up to 5740 m. Whistles contained less than 17 mJ of acoustic energy, showing that the energetic cost of whistling is small compared to the high metabolic rate of these aquatic mammals, and unlikely to limit the vocal activity of toothed whales.  相似文献   

13.
The spectral and temporal properties of echolocation clicks and the use of clicks for species classification are investigated for five species of free-ranging dolphins found offshore of southern California: short-beaked common (Delphinus delphis), long-beaked common (D. capensis), Risso's (Grampus griseus), Pacific white-sided (Lagenorhynchus obliquidens), and bottlenose (Tursiops truncatus) dolphins. Spectral properties are compared among the five species and unique spectral peak and notch patterns are described for two species. The spectral peak mean values from Pacific white-sided dolphin clicks are 22.2, 26.6, 33.7, and 37.3 kHz and from Risso's dolphins are 22.4, 25.5, 30.5, and 38.8 kHz. The spectral notch mean values from Pacific white-sided dolphin clicks are 19.0, 24.5, and 29.7 kHz and from Risso's dolphins are 19.6, 27.7, and 35.9 kHz. Analysis of variance analyses indicate that spectral peaks and notches within the frequency band 24-35 kHz are distinct between the two species and exhibit low variation within each species. Post hoc tests divide Pacific white-sided dolphin recordings into two distinct subsets containing different click types, which are hypothesized to represent the different populations that occur within the region. Bottlenose and common dolphin clicks do not show consistent patterns of spectral peaks or notches within the frequency band examined (1-100 kHz).  相似文献   

14.
Tuna fishers in the eastern Pacific Ocean often exploit an association between a few genus of dolphin (Stenella and Delphinus) and yellowfin tuna (Thunnus albacares) to locate and capture the tuna. Identification of a mechanism which facilitates the tuna/dolphin bond may provide a means of exploiting the bond and capturing tuna without catching dolphin. To investigate if tuna may be attracted to low-frequency sounds produced by dolphins, source levels of bottlenose dolphin (Tursiops truncatus) jaw pops, breaches, and tail slaps were experimentally measured and used to estimate the maximum range at which yellowfin could detect similar sounds produced by pelagic species. The effective acoustic stimulus to the tuna was defined as the maximum one-third-octave level between 200 and 800 Hz, the frequency range where T. albacares is most sensitive. Spherical spreading was assumed to predict transmission loss with range. Breaches and jaw pops produced maximum one-third-octave source levels between 200 and 800 Hz of 153 (+/-4) and 163 (+/-2) dB re: 1 microPa-m, respectively, which resulted in estimated detection ranges of 340-840 and 660-1040 m, respectively. Tail slaps had lower source levels [max. 141 (+/-3) dB re: 1 microPa-m] and a maximum detection range of approximately 90-180 m.  相似文献   

15.
Time averaged narrow-band noise near 27 Hz produced by vocalizations of many distant Antarctic blue whales intensifies seasonally from early February to late October in the ocean off Australia's South West. Spectral characteristics of long term patterns in this noise band were analyzed using ambient noise data collected at the Comprehensive Nuclear-Test-Ban Treaty hydroacoustic station off Cape Leeuwin, Western Australia over 2002-2010. Within 7 day averaged noise spectra derived from 4096-point FFT (~0.06 Hz frequency resolution), the -3-dB width of the spectral peak from the upper tone of Antarctic blue whale vocalization was about 0.5 Hz. The spectral frequency peak of this tonal call was regularly but not gradually decreasing over the 9 years of observation from ~27.7 Hz in 2002 to ~26.6 Hz in 2010. The average frequency peak steadily decreased at a greater rate within a season at 0.4-0.5 Hz/season but then in the next year recovered to approximately the mean value of the previous season. A regression analysis showed that the interannual decrease rate of the peak frequency of the upper tonal call was 0.135 ± 0.003 Hz/year over 2002-2010 (R(2) ≈ 0.99). Possible causes of such a decline in the whale vocalization frequency are considered.  相似文献   

16.
The Indian Ocean and Atlantic bottlenose dolphins (Tursiops aduncus and Tursiops truncatus) are among the best studied echolocating toothed whales. However, almost all echolocation studies on bottlenose dolphins have been made with captive animals, and the echolocation signals of free-ranging animals have not been quantified. Here, biosonar source parameters from wild T. aduncus and T. truncatus were measured with linear three- and four-hydrophone arrays in four geographic locations. The two species had similar source parameters, with source levels of 177-228 dB re 1 μPa peak to peak, click durations of 8-72 μs, centroid frequencies of 33-109 kHz and rms bandwidths between 23 and 54 kHz. T. aduncus clicks had a higher frequency emphasis than T. truncatus. The transmission directionality index was up to 3 dB higher for T. aduncus (29 dB) as compared to T. truncatus (26 dB). The high directionality of T. aduncus does not appear to be only a physical consequence of a higher frequency emphasis in clicks, but may also be caused by differences in the internal properties of the sound production system.  相似文献   

17.
Humpback whales in Southeast Alaskan waters produced five categories of sounds: moans, grunts, pulse trains, blowhole-associated sounds, and surface impacts. Frequencies (Hz) of moans and grunts were 20-1900. Major energy in low-frequency pulse trains was in a band of 25-80 Hz with pulse duration of 300-400 ms. Blowhole-associated sounds, recorded as transiting whales encountered one another, were of two types: shrieks, 555-2000 Hz, and trumpetlike horn blasts with fundamental at 414 Hz (median). Pulses and spread spectrum noise were associated with gas bubble formation and explosive bursts, respectively, in connection with spiral feeding maneuvers. Surface impacts resulted from fluke or flipper slaps in sequences of 3-21 sounds. Source levels ranged from 162 (low-frequency pulse trains) to 192 dB (surface impacts), re: 1 microPa, 1 m. Songs, commonly heard on winter breeding grounds, were absent from our recordings. Feeding and perhaps certain other whale activities can be monitored based on sound production.  相似文献   

18.
Sounds produced by Irrawaddy dolphins, Orcaella brevirostris, were recorded in coastal waters off northern Australia. They exhibit a varied repertoire, consisting of broadband clicks, pulsed sounds and whistles. Broad-band clicks, "creaks" and "buzz" sounds were recorded during foraging, while "squeaks" were recorded only during socializing. Both whistle types were recorded during foraging and socializing. The sounds produced by Irrawaddy dolphins do not resemble those of their nearest taxonomic relative, the killer whale, Orcinus orca. Pulsed sounds appear to resemble those produced by Sotalia and nonwhistling delphinids (e.g., Cephalorhynchus spp.). Irrawaddy dolphins exhibit a vocal repertoire that could reflect the acoustic specialization of this species to its environment.  相似文献   

19.
20.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in two bottlenose dolphins and one beluga whale before and after exposure to impulsive underwater sounds with waveforms resembling distant signatures of underwater explosions. An array of piezoelectric transducers was used to generate impulsive sounds with waveforms approximating those predicted from 5 or 500 kg HBX-1 charges at ranges from 1.5 to 55.6 km. At the conclusion of the study, no temporary shifts in masked-hearing thresholds (MTTSs), defined as a 6-dB or larger increase in threshold over pre-exposure levels, had been observed at the highest impulse level generated (500 kg at 1.7 km, peak pressure 70 kPa); however, disruptions of the animals' trained behaviors began to occur at exposures corresponding to 5 kg at 9.3 km and 5 kg at 1.5 km for the dolphins and 500 kg at 1.9 km for the beluga whale. These data are the first direct information regarding the effects of distant underwater explosion signatures on the hearing abilities of odontocetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号