共查询到20条相似文献,搜索用时 0 毫秒
1.
Source-to-sensation level ratio of transmitted biosonar pulses in an echolocating false killer whale
Supin AY Nachtigall PE Breese M 《The Journal of the Acoustical Society of America》2006,120(1):518-526
Transmitted biosonar pulses, and the brain auditory evoked potentials (AEPs) associated with those pulses, were synchronously recorded in a false killer whale Pseudorca crassidens trained to accept suction-cup EEG electrodes and to detect targets by echolocation. AEP amplitude was investigated as a function of the transmitted biosonar pulse source level. For that, a few thousand of the individual AEP records were sorted according to the spontaneously varied amplitude of synchronously recorded biosonar pulses. In each of the sorting bins (in 5-dB steps) AEP records were averaged to extract AEP from noise; AEP amplitude was plotted as a function of the biosonar pulse source level. For comparison, AEPs were recorded to external (in free field) sound pulses of a waveform and spectrum similar to those of the biosonar pulses; amplitude of these AEPs was plotted as a function of sound pressure level. A comparison of these two functions has shown that, depending on the presence or absence of a target, the sensitivity of the whale's hearing to its own transmitted biosonar pulses was 30 to 45 dB lower than might be expected in a free acoustic field. 相似文献
2.
Rankin S Oswald J Barlow J Lammers M 《The Journal of the Acoustical Society of America》2007,121(2):1213-1218
Vocalizations from the northern right whale dolphin, Lissodelphis borealis, were recorded during a combined visual and acoustic shipboard survey of cetacean populations off the west coast of the United States. Seven of twenty single-species schools of L. borealis produced click and pulsed vocalizations. No whistles were detected during any of the encounters. Clicks associated with burst-pulse vocalizations were lower in frequency and shorter in duration than clicks associated with echolocation. All burst-pulse sounds were produced in a series containing 6-18 individual burst-pulses. These burst-pulse series were stereotyped and repeated. A total of eight unique burst-pulse series were detected. Variation in the temporal characteristics of like units compared across repeated series was less than variation among all burst-pulses. These stereotyped burst-pulse series may play a similar communicative role as do stereotyped whistles found in other delphinid species. 相似文献
3.
Supin AY Nachtigall PE Breese M 《The Journal of the Acoustical Society of America》2007,121(1):618-625
False killer whale Pseudorca crassidens auditory brainstem responses (ABR) were recorded using a double-click stimulation paradigm specifically measuring the recovery of the second response (to the test click) as a function of the inter-click interval (ICI) at various levels of the conditioning and test click. At all click intensities, the slopes of recovery functions were almost constant: 0.6-0.8 microV per ICI decade. Therefore, even when the conditioning-to-test-click level ratio was kept constant, the duration of recovery was intensity-dependent: The higher intensity the longer the recovery. The conditioning-to-test-click level ratio strongly influenced the recovery time: The higher the ratio, the longer the recovery. The dependence was almost linear using a logarithmic ICI scale with a rate of 25-30 dB per ICI decade. These data were used for modeling the interaction between the emitted click and the echo during echolocation, assuming that the two clicks simulated the transmitted and echo clicks. This simulation showed that partial masking of the echo by the preceding emitted click may explain the independence of echo-response amplitude of target distance. However, the distance range where this mechanism is effective depends on the emitted click level: The higher the level, the greater the range. @ 2007 Acoustical Society of America. 相似文献
4.
W W Au D A Carder R H Penner B L Scronce 《The Journal of the Acoustical Society of America》1985,77(2):726-730
The echolocation signals of the same beluga whale (Delphinapterus leucas) were measured first in San Diego Bay, and later in Kaneohe Bay, Oahu, Hawaii. The ambient noise level in Kaneohe Bay is typically 12-17 dB greater than in San Diego Bay. The whale demonstrated the adaptiveness of its biosonar by shifting to higher frequencies and intensities after it was moved to Kaneohe. In San Diego, the animal emitted echolocation signals with peak frequencies between 40 and 60 kHz, and bandwidths between 15 and 25 kHz. In Kaneohe, the whale shifted its signals approximately an octave higher in frequencies with peak frequencies between 100 and 120 kHz, and bandwidths between 20 and 40 kHz. Signal intensities measured in Kaneohe were up to 18 dB higher than in San Diego. The data collected represent the first quantitative evidence of the adaptive capability of a cetacean biosonar system. 相似文献
5.
6.
WW Au B Branstetter PW Moore JJ Finneran 《The Journal of the Acoustical Society of America》2012,132(2):1199-1206
Biosonar signals radiated along the beam axis of an Atlantic bottlenose dolphin resemble short transient oscillations. As the azimuth of the measuring hydrophones in the horizontal plane progressively increases with respect to the beam axis the signals become progressively distorted. At approximately ±45°, the signals begin to divide into two components with the time difference between the components increasing with increasing angles. At ±90° or normal to the longitudinal axis of the animal, the time difference between the two pulses measured by the hydrophone on the right side of the dolphin's head is, on average, ~11.9?μs larger than the time differences observed by the hydrophone on the left side of the dolphin's head. The center frequency of the first pulse is generally lower, by 33-47?kHz, than the center frequency of the second pulse. When considering the relative locations of the two phonic lips, the data suggest that the signals are being produced by one of the phonic lips and the second pulse resulting from a reflection within the head of the animal. The generation of biosonar signals is a complex process and the propagation pathways through the dolphin's head are not well understood. 相似文献
7.
Müller R Lu H Zhang S Peremans H 《The Journal of the Acoustical Society of America》2006,119(6):4083-4092
Directivity and sound diffraction of the pinna of the Chinese Noctule (Nyctalus plancyi) have been studied numerically. The pinna was found capable of generating a periodic helical scanning pattern over frequency, if the tragus and the thickened lower ledge of the pinna rim were in an appropriate position. During the helical scan, a directivity pattern with a strong mainlobe alternated with a pattern dominated by a conical sleeve of sidelobes. This alternation was present, even when an unfavorable arrangement of the pinna disrupted the overall helical scanning pattern. In the fully formed helical scan, the orientation of main and sidelobes for different frequencies revealed a spatial ordering which extends volume coverage. Five different pinna parts have been removed from the digital pinna-shape representations in turn to assess their influence on the directivity. Of these parts, the tragus stem and the thickened lower ledge of the pinna rim were found to have the largest overall impact. The anatomical prominence of these structures was hence in agreement with their acoustic functionality. In the near-field, tragus stem and lower ledge were seen to act primarily through large shifts in the wavefield phase in both directions. 相似文献
8.
Capus C Pailhas Y Brown K Lane DM Moore PW Houser D 《The Journal of the Acoustical Society of America》2007,121(1):594-604
This paper uses advanced time-frequency signal analysis techniques to generate new models for bio-inspired sonar signals. The inspiration comes from the analysis of bottlenose dolphin clicks. These pulses are very short duration, between 50 and 80 micros, but for certain examples we can delineate a double down-chirp structure using fractional Fourier methods. The majority of clicks have energy distributed between two main frequency bands with the higher frequencies delayed in time by 5-20 micros. Signal syntheses using a multiple chirp model based on these observations are able to reproduce much of the spectral variation seen in earlier studies on natural dolphin echolocation pulses. Six synthetic signals are generated and used to drive the dolphin based sonar (DBS) developed through the Biosonar Program office at the SPAWAR Systems Center, San Diego, CA. Analyses of the detailed echo structure for these pulses ensonifying two solid copper spherical targets indicate differences in discriminatory potential between the signals. It is suggested that target discrimination could be improved through the transmission of a signal packet in which the chirp structure is varied between pulses. Evidence that dolphins may use such a strategy themselves comes from observations of variations in the transmissions of dolphins carrying out target detection and identification tasks. 相似文献
9.
10.
The results of measuring the sonar signals produced by a beluga whale when locating a target presented at a distance of 600 m are discussed. The head of the beluga whale was positioned at a depth of 1.5 m, and the acoustic pulses emitted by the animal were measured by a horizontal chain of four hydrophones, which was placed at a distance of 1.8 m from the head. The analysis of time sequences of acoustic signals generated by the beluga whale demonstrated that the animal, when searching for an underwater object, uses trains of pulses following at intervals of Δt < 5 ms and emitted within a wide sector (up to 36°). It performs scanning by beamed single pulses with Δt up to 200 ms, and, when it detects the target, it irradiates the latter with a group of such signals. To locate a difficult target (at a small depth and a large distance), the beluga whale uses trains of pulses with a duration of up to 0.6 s and a time-pulse modulation. 相似文献
11.
Rankin S Baumann-Pickering S Yack T Barlow J 《The Journal of the Acoustical Society of America》2011,130(5):EL339-EL344
Sounds from Longman's beaked whale, Indopacetus pacificus, were recorded during shipboard surveys of cetaceans surrounding the Hawaiian Islands archipelago; this represents the first known recording of this species. Sounds included echolocation clicks and burst pulses. Echolocation clicks were grouped into three categories, a 15 kHz click (n?=?106), a 25 kHz click (n?=?136), and a 25 kHz pulse with a frequency-modulated upsweep (n?=?70). The 15 and 25 kHz clicks were relatively short (181 and 144 ms, respectively); the longer 25 kHz upswept pulse was 288 ms. Burst pulses were long (0.5 s) click trains with approximately 240 clicks/s. 相似文献
12.
Finneran JJ Schlundt CE Carder DA Ridgway SH 《The Journal of the Acoustical Society of America》2002,112(1):322-328
Auditory filter shapes were estimated in two bottlenose dolphins (Tursiops truncatus) and one white whale (Delphinapterus leucas) using a behavioral response paradigm and notched noise. Masked thresholds were measured at 20 and 30 kHz. Masking noise was centered at the test tone and had a bandwidth of 1.5 times the tone frequency. Half-notch width to center frequency ratios were 0, 0.125, 0.25, 0.375, and 0.5. Noise spectral density levels were 90 and 105 dB re: 1 microPa2/Hz. Filter shapes were approximated using a roex(p,r) function; the parameters p and r were found by fitting the integral of the roex(p,r) function to the measured threshold data. Mean equivalent rectangular bandwidths (ERBs) calculated from the filter shapes were 11.8 and 17.1% of the center frequency at 20 and 30 kHz, respectively, for the dolphins and 9.1 and 15.3% of the center frequency at 20 and 30 kHz, respectively, for the white whale. Filter shapes were broader at 30 kHz and 105 dB re: 1 microPa2/Hz masking noise. The results are in general agreement with previous estimates of ERBs in Tursiops obtained with a behavioral response paradigm. 相似文献
13.
N. A. Dubrovsky 《Acoustical Physics》2004,50(3):305-317
The hypothesis put forward by Vel’min and Dubrovsky [1] is discussed. The hypothesis suggests that bottlenose dolphins possess two functionally separate auditory subsystems: one of them serves for analyzing extraneous sounds, as in nonecholocating terrestrial animals, and the other performs the analysis of echoes caused by the echolocation clicks of the animal itself. The first subsystem is called passive hearing, and the second, active hearing. The results of experimental studies of dolphin’s echolocation system are discussed to confirm the proposed hypothesis. For the active hearing of dolphins, the notion of a critical interval is considered as the interval of time within which the formation of a merged auditory image of the echolocation object is formed when all echo highlights of the echo from this object fall within the critical interval. 相似文献
14.
利用NCEP/NCAR月平均高度场再分析资料,分别提取季节内和年际以上振荡的基本特征和形式,运用信息传输理论分析这两种振荡信号的信息在低纬度与中高纬度间的传输.发现季节内振荡信号信息损失率较年际以上的偏大,且在特定地区这两种振荡信号的信息具有反向传输的特征;空间传输的水平分布上,两种振荡信号均表现为纬向上低纬度信息损失率大且海陆分布差异显著;空间传输的垂直分布上,年际以上振荡信号的低纬度高空信息损失率较大,中高纬度从对流层至平流层底信息损失率都较小,而季节内振荡信号则是低空信息损失率大,高空信息损失率小.
关键词:
滤波
高度场
信息损失率 相似文献
15.
纠缠微波信号是电磁场微波频段量子特性的体现.在总结了现有纠缠微波信号产生及验证实验的基础上,针对目前没有统一的表达式来描述纠缠微波信号格式的问题,通过深入分析纠缠微波信号的特性,提出了两种纠缠微波信号的表示方法.一种是在量子框架下,利用双模压缩真空态表示,并分别在光子数表象下和Wigner分布下分析了其信号特征,刻画了正交分量之间的正反关联特性;另一种是在经典框架下,利用关联随机信号表示,刻画了测量后纠缠微波信号场幅度正交分量随时间变化的波形图.两种表示恰当合理地反映了纠缠微波信号连续变量纠缠的特性. 相似文献
16.
17.
Buck JR Morgenbesser HB Tyack PL 《The Journal of the Acoustical Society of America》2000,108(1):407-416
A signal-processing algorithm was developed to analyze harmonic frequency-modulated sounds, to modify the parameters of the analyzed signal, and to synthesize a new analytically specified signal that resembles the original signal in specified features. This algorithm was used with dolphin whistles, a frequency-modulated harmonic signal that has typically been described in terms of its contour, or pattern of modulation of the fundamental frequency. In order to test whether other features may also be salient to dolphins, the whistle analysis calculates the energies at the harmonics as well as the fundamental frequency of the whistle. The modification part of the algorithm can set all of these energies to a constant, can shift the whistle frequency, and can expand or compress the time base or the frequency of the whistle. The synthesis part of the algorithm then synthesizes a waveform based upon the energies and frequencies of the fundamental and first two harmonics. These synthetic whistles will be useful for evaluating what acoustic features dolphins use in discriminating different whistles. 相似文献
18.
Sounds of blue whales were recorded from U.S. Navy hydrophone arrays in the North Atlantic. The most common signals were long, patterned sequences of very-low-frequency sounds in the 15-20 Hz band. Sounds within a sequence were hierarchically organized into phrases consisting of one or two different sound types. Sequences were typically composed of two-part phrases repeated every 73 s: a constant-frequency tonal "A" part lasting approximately 8 s, followed 5 s later by a frequency-modulated "B" part lasting approximately 11 s. A common sequence variant consisted only of repetitions of part A. Sequences were separated by silent periods averaging just over four minutes. Two other sound types are described: a 2-5 s tone at 9 Hz, and a 5-7 s inflected tone that swept up in frequency to ca. 70 Hz and then rapidly down to 25 Hz. The general characteristics of repeated sequences of simple combinations of long-duration, very-low-frequency sound units repeated every 1-2 min are typical of blue whale sounds recorded in other parts of the world. However, the specific frequency, duration, and repetition interval features of these North Atlantic sounds are different than those reported from other regions, lending further support to the notion that geographically separate blue whale populations have distinctive acoustic displays. 相似文献
19.
Erbe C 《The Journal of the Acoustical Society of America》2000,108(1):297-303
This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was masked by three types of noise, an icebreaker's bubbler system and propeller noise, and ambient arctic ice-cracking noise. Both the human experiment and the neural network successfully modeled the beluga data in the sense that they classified the noises in the same order from strongest to weakest masking as the whale and with similar call-detection thresholds. The neural network slightly outperformed the humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian white noise. Their prediction ability was judged by returning to the aquarium to measure masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise masked the least. However, the humans and the neural network slightly overpredicted the amount of masking for white noise. This is neglecting individual variation in belugas, because only one animal could be trained. Comparing the human model to the neural network model, the latter has the advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of a large number of signals and noise is to be examined. 相似文献
20.
The transmitting beam patterns of echolocation signals emitted by an Atlantic bottlenose dolphin Tursiops truncatus were measured in the vertical and horizontal planes with an array of seven hydrophones. Particular emphasis was placed on accurately verifying the animal's position on a bite-plate/tail-rest stationing device using underwater video monitoring equipment. The major axis of the vertical beam was directed at an angle of 5 degrees above the plane defined by the animal's lips. This angle was 15 degrees lower than previously measured. The vertical beam measurements indicate that the major axis of the transmitting beam is aligned with the major axis of the receiving beam. The horizontal beam was directed forward. The directivity index of 26.5 dB calculated from the beam pattern measured in both planes agreed well with previous calculation of 25.4 dB. 相似文献