首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimized pulse shaping experiments were carried out on the control of two-photon excitation efficiency of an alpha-perylene crystal in the temperature region from 30 to 290 K. It was found that a pulse train with a pulse interval of 90 fs and an alternately reversing phase relation increased the excitation efficiency by a factor of 2 for the whole temperature region. The pulse shape characteristic for effective efficiency increase was reduced by double pulse experiments in which the dependence of the emission intensity on the pulse interval and relative phase between pulses were measured. The mechanism of the efficiency increase is briefly discussed using a sliding-window Fourier transform of the pulse shape.  相似文献   

2.
The effect of aggregation on the excited-state electronic structure of perylene was studied through transient absorption measurements of isolated molecules, excimers, monomeric crystals (beta-perylene), and dimeric crystals (alpha-perylene). Changes of electronic state were clearly identified from the changes in transient absorption spectra. A detailed investigation was made by combining the obtained results with previous measurements of ground-state absorption and fluorescence spectra. The energy level of the ion-pair state in alpha-perylene crystals was estimated, and the results are compared with previous photoconductivity results. Moreover, the relaxation processes of excited states in alpha-perylene crystals were studied by femtosecond transient absorption measurements.  相似文献   

3.
The excited-state symmetry and molecular reorientation of perylene, 1,7-diazaperylene, and 2,5,8,11-tetra- tert-butylperylene have been studied by different fluorescence depolarization experiments. The first excited electronic singlet state was reached through one-photon excitation (OPE) and two-photon excitation (TPE). A 400 and 800 nm femtosecond laser pulse was used for this purpose, and data were collected by means of the time-correlated single-photon counting technique. It is found that the rotational correlation times for each perylene derivative are very similar in the OPE and TPE depolarization experiments. For the determination of the two-photon absorption tensor, a recently described theoretical model has been applied (Ryderfors et al. J. Phys. Chem. A 2007, 111, 11531). It was found that the two-photon process can be described by a 2 x 2 absorption tensor for which the components are solvent dependent and exhibit mixed vibronic character. In the dipole approximation this is compatible with a parity-forbidden two-photon absorption into the first excited singlet state.  相似文献   

4.
Although ultrashort pulses are advantageous for multiphoton excitation microscopy, they can be difficult to manipulate and may cause increased sample damage when applied to biological tissue. Here we present a method based on coherent control that corrects phase distortions introduced by high numerical aperture (NA) microscope objectives, thereby achieving the full potential of ultrashort pulses. A number of useful phase functions are recommended to gain selectivity that is similar to that which can be achieved by tuning a longer laser pulse; however this one involves no moving parts and maintains perfect optimization. This capability is used to demonstrate functional imaging by selective two-photon excitation of a pH-sensitive chromophore. Finally, we show that phase functions can also be introduced to minimize multiphoton excitation damage, while maintaining a high efficiency of two-photon excitation.  相似文献   

5.
Multiphoton ionization mass spectra of nonvolatile molecules laser desorbed into a supersonic beam are recorded. It is shown by indirect measurements that the laser desorption of neutrals is not mass limited, but lead to the formation of neutrals with intesities large enough for intense signals. To investigate the efficiency of the multiphoton ionization process with varying laser pulse durations, simultaneous laser pulses of 500 fs and 5 ns or 100 fs and 5 ns have been applied to the neutral beam. The energies of both femtosecond and nanosecond laser pulses are held in a comparable magnitude, and thus produce, in the resulting ion intensity, very large differences up to 4 orders of magnitude. For larger evaporated molecules (> 500 u) the ionization efficiency from nanosecond laser pulses drops significantly in comparison to femtosecond laser pulse excitation. A variety of possible reasons for the different ionization and dissociation behavior in femtosecond and nanosecond laser pulse excitations are discussed in this paper. It is rationalized that even with very short laser pulses and large molecules the “ladder switching model” for ionization and fragmentation is valid.  相似文献   

6.
Microcrystalline powders of spirooxazine and spiropyran compounds do not show photocoloration under steady-state illumination, whereas they undergo photochromism on intense femtosecond laser-pulse excitation. We investigated the characteristic mechanism of the crystalline photochromism by studying the photocoloration of spironaphthooxazine (SNO) and its chloro-substituted derivative (Cl-SNO) with our femtosecond diffuse-reflectance spectroscopic system. In particular, femtosecond double-pulse excitation using 390+780-nm pulses and 390+390-nm pulses, with a variable time interval between the two pulses, was applied to reveal an intermediate species involved in the photocoloration. Although 780-nm excitation of an intermediate produced by 390-nm excitation did not lead to isomerization, the 390+390-nm excitation resulted in photocoloration. The yield for SNO decreased on increasing the interval from 40 ps to 5 ns, while that for Cl-SNO was constant. The photocoloration mechanism in the crystalline phase is considered from the viewpoint of the time-dependent density of short-lived transient species, and it is concluded that cooperative interactions of excited states and nonplanar open forms play an important role in femtosecond laser-induced photochromism in these crystals.  相似文献   

7.
The use of two-color two-photon (2c2p) excitation easily extends the wavelength range of Ti:sapphire lasers to the UV, widening the scope of its applications especially in biological sciences. We report observation of 2c2p excitation fluorescence of p-terphenyl (PTP), 2-methyl-5-t-butyl-p-quaterphenyl (DMQ) and tryptophan upon excitation with 400 and 800 nm wavelengths using the second harmonic and fundamental wavelength of a mode-locked Ti:sapphire femtosecond laser. This excitation is energetically equivalent to a one-photon excitation wavelength at 266 nm. The fluorescence signal is observed only when both wavelengths are spatially and temporally overlapping. Adjustment of the relative delay of the two laser pulses renders a cross correlation curve which is in good agreement with the pulse width of our laser. The fluorescence signal is linearly dependent on the intensity of each of the two colors but quadratically on the total incident illumination power of both colors. In fluorescence microscopy, the use of a combination of intense IR and low-intensity blue light as a substitute for UV light for excitation can have numerous advantages. Additionally, the effect of differently polarized excitation photons relative to each other is demonstrated. This offers information about different transition symmetries and yields deeper insight into the two-photon excitation process.  相似文献   

8.
The linear and non-linear photophysical properties of tris-dipicolinate europium and terbium complexes (absorption, emission, lifetime, luminescence induced by two-photon absorption) are studied in the crystalline state as well as in protein derivative crystals and compared to those in solution. Upon laser irradiation at 532 nm, luminescence of terbium is induced by a two-photon antenna effect, whereas luminescence of europium results from one-photon absorption in forbidden f-f transitions. Finally, linear and two-photon microscopy imaging experiments on biological and bio-inspired crystals are performed. These first proof-of-concept experiments open the way for the development of time-resolved non-linear microscopy that should combine the advantages of lanthanide luminescence (long lifetime, sharp emission bands, insensitivity to oxygen) with those of confocal biphotonic excitation (near-IR excitation, 3D resolution and reduced photodamage).  相似文献   

9.
A theoretical analysis of coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase resonances using femtosecond lasers is performed. The time-dependent density matrix equations for the femtosecond CARS process are formulated and manipulated into a form suitable for solution by direct numerical integration (DNI). The temporal shapes of the pump, Stokes, and probe laser pulses are specified as an input to the DNI calculations. It is assumed that the laser pulse shapes are 70 fs Gaussians and that the pulses are Fourier-transform limited. A single excited electronic level is defined as an effective intermediate level in the Raman process, and transition strengths are adjusted to match the experimental Raman polarizability. The excitation of the Raman coherence is investigated for different Q-branch rotational transitions in the fundamental 2330 cm(-1) band of diatomic nitrogen, assuming that the pump and Stokes pulses are temporally overlapped. The excitation process is shown to be virtually identical for transitions ranging from Q2 to Q20. The excitation of the Raman coherences is also very efficient; for laser irradiances of 5x10(17) W/m2, corresponding approximately to a 100 microJ, 70 fs pulse focused to 50 microm, approximately 10% of the population of the ground Raman level is pumped to the excited Raman level during the impulsive pump-Stokes excitation, and the magnitude of the induced Raman coherence reaches 40% of its maximum possible value. The theoretical results are compared with the results of experiments where the femtosecond CARS signal is recorded as a function of probe delay with respect to the impulsive pump-Stokes excitation.  相似文献   

10.
Optimal laser control for ultrafast selection of closely lying excited states whose energy separation is smaller than the laser bandwidth is reported on the two-photon transition of atomic cesium; Cs(6S-->7D(J), J=5/2 and 3/2). Selective excitation was carried out by pulse shaping of ultrashort laser pulses which were adaptively modulated in a closed-loop learning system handling eight parameters representing the electric field. Two-color fluorescence from the respective excited states was monitored to measure the selectivity. The fitness used in the learning algorithm was evaluated from the ratio of the fluorescence yields. After fifty generations, a pair of nearly transform-limited pulses were obtained as an optimal pulse shape, proving the effectiveness of the "Ramsey fringes" mechanism. The contrast of the selection ratio was improved by approximately 30% from the simple "Ramsey fringes" experiment.  相似文献   

11.
Two-photon excitation studies of hypocrellins for photodynamic therapy   总被引:8,自引:0,他引:8  
The photophysical and photochemical properties of hypocrellins (HA and HB) are examined with two-photon excitations at 800 nm using femtosecond pulses from a Ti:sapphire laser. The two-photon excited fluorescence spectra of HA and HB are very similar to those obtained by one-photon excitation, which may indicate that the two-photon induced photodynamic processes of hypocrellins are similar to one-photon induced photodynamic processes. The two-photon excitation cross sections of HA and HB are measured at 800 nm as about 34.8 x 10(-50) cm(4) s/photon and 21.3 x 10(-50) cm(4) s/photon, respectively. The large two-photon cross sections of both HA and HB, suggest that the hypocrellins can be potential two-photon phototherapeutic agents. As an example for two-photon photodynamic therapy of hypocrellins, we also further examine the cell-damaging effects of HA upon two-photon illumination. Our preliminary results of cell viability test indicate hypocrellins can effectively damage the Hela cells under two-photon illumination.  相似文献   

12.
Excitation of pure chloroform or a gold colloid in chloroform (average nanoparticle diameter of 2.5 nm) with 740-nm femtosecond pulses of 23-fs duration leads to oscillations in the differential absorption signal ΔA(λ, t) recorded using white-light continuum. The main oscillation modes for both systems are close to the chloroform Raman resonance frequencies of 260, 367, and 668 cm−1. However, marked narrowing and splitting of bands in the Fourier-transform spectra of oscillations are observed in the system of gold colloid in chloroform. The intensity of oscillations linearly increases with the pump pulse intensity in the cases of pure chloroform and the system of gold colloid in chloroform. Apparently, the principal mechanism of excitation of coherent packets in chloroform is femtosecond impulsive stimulated Raman scattering (ISRS). Dissolution of gold nanoparticles leads to a four- to sixfold enhancement of the Raman resonance signal of chloroform in the gold colloid as compared with pure chloroform. The increase in the intensity of Raman resonances is presumably due to amplification in the near field of gold nanoparticles.  相似文献   

13.
We review the progress in controlling quantum dynamical processes in the condensed phase with femtosecond laser pulses. Due to its high particle density the condensed phase has both high relevance and appeal for chemical synthesis. Thus, in recent years different methods have been developed to manipulate the dynamics of condensed-phase systems by changing one or multiple laser pulse parameters. Single-parameter control is often achieved by variation of the excitation pulse's wavelength, its linear chirp or its temporal subpulse separation in case of pulse sequences. Multiparameter control schemes are more flexible and provide a much larger parameter space for an optimal solution. This is realized in adaptive femtosecond quantum control, in which the optimal solution is iteratively obtained through the combination of an experimental feedback signal and an automated learning algorithm. Several experiments are presented that illustrate the different control concepts and highlight their broad applicability. These fascinating achievements show the continuous progress on the way towards the control of complex quantum reactions in the condensed phase.  相似文献   

14.
The direct excitation of CO_2 using fast (nanosecond) and ultrafast (femtosecond) pulsed lasers was investigated. A gas reaction cell was used to excite CO_2 in a 50:50 mixture of CO_2 and CH_4 using nano- and femtosecond laser systems, to induce a reaction between these two compounds. FT-IR spectra showed that CO was formed using the nanosecond and femtosecond laser systems. It was also found that hydrocarbons, containing C-C bonds were formed. For both the nanosecond and femtosecond laser, it was found that more C-C higher hydrocarbons were formed after 5 h compared to 3 h of irradiation. Irradiation at pressures of 250, 350 and 500 kPa with the femtosecond laser system showed the expected increase in the amount of CO formed with an increase in pressure. Results from this study showed that carbon dioxide and methane can be activated successfully using nanosecond laser pulses at 2000 run and femtosecond laser pulses at 795 or 2000 nm and that these activated species react to form CO and C-C containing products.  相似文献   

15.
The direct excitation of CO2 using fast (nanosecond) and ultrafast (femtosecond) pulsed lasers was investigated.A gas reaction cell was used to excite CO2 in a 50:50 mixture of CO2 and CH4 using nano-and femtosecond laser systems,to induce a reaction between these two compounds.FT-IR spectra showed that CO was formed using the nanosecond and femtosecond laser systems.It was also found that hydrocarbons,containing C-C bonds were formed.For both the nanosecond and femtosecond laser,it was found that more C-C higher hydrocarbons were formed after 5 h compared to 3 h of irradiation.Irradiation at pressures of 250,350 and 500 kPa with the femtosecond laser system showed the expected increase in the amount of CO formed with an increase in pressure.Results from this study showed that carbon dioxide and methane can be activated successfully using nanosecond laser pulses at 2000 nm and femtosecond laser pulses at 795 or 2000 nm and that these activated species react to form CO and C-C containing products.  相似文献   

16.
Nanosecond (lambda exc = 266, 355 and 532 nm) and picosecond (lambda exc = 355 nm) laser flash photolysis of hematoporphyrin (Hp) was performed in neutral (pH 7.4) and alkaline (pH 12) aqueous solution, as well as in the presence of 0.1% Triton X-100. The dependence of the yield of photoproduced hydrated electrons (e-aq) on laser pulse energy was studied over a wide range of energies (0.2 to greater than 1000 mJ cm-2). The results show that e-aq are predominantly formed in a two-photon process at lambda exc = 266 and 355 nm. One-photon quantum yields are higher at lambda exc = 266 nm than at lambda exc = 355 nm. Both one-photon and two-photon pathways are less efficient at higher Hp concentration, reflecting the influence of Hp self-aggregation. Two-photon e-aq formation is more efficient when 30 ps pulses are used for excitation, as compared to 10 ns pulses. No e-aq could be detected at lambda exc = 532 nm. Nanosecond pulse-induced transient spectra obtained at pH 7.4 are also discussed.  相似文献   

17.
The VUV absorption spectrum of fenchone is re-examined using synchrotron radiation Fourier transform spectrometry, revealing new vibrational structure. Picosecond laser (2+1) resonance enhanced multiphoton ionization (REMPI) spectroscopy complements this, providing an alternative view of the 3spd Rydberg excitation region. These spectra display broadly similar appearance, with minor differences that are largely explained by referring to calculated one- and two-photon electronic excitation cross-sections. Both show good agreement with Franck-Condon simulations of the relevant vibrational structures. Parent ion REMPI ionization yields with both femtosecond and picosecond excitation laser pulses are studied as a function of laser polarization and intensity, the latter providing insight into the relative two-photon excitation and one-photon ionization rates. The experimental circular-linear dichroism observed in the parent ion yields varies strongly between the 3s and 3p Rydberg states, in good overall agreement with the calculated two-photon excitation circular-linear dichroism, while corroborating other evidence that the 3pz sub-state plays no more than a very minor role in the (2+1) REMPI spectrum. Vibrationally resolved photoelectron spectra are recorded with picosecond pulse duration (2+1) REMPI at selected intermediate vibrational excitations. The 3s intermediate state displays a very strong Δv=0 propensity on ionization, but the 3p intermediate evidences more complex vibronic dynamics, and we infer some 3p→3s internal conversion prior to ionization.  相似文献   

18.
Abstract— We report the observation of two-photon excitation of an organic fluorophore with two different wavelengths, a phenomenon we refer to as two-color two-photon (2C2P) excitation. Ultraviolet emission of p -Merphenyl at 340 nm was observed when the sample was illuminated with both 375 and 750 nm pulses from a picosecond dye laser. The emission of p -terphenyl was about 100-fold and more than 1000-fold less for illumination at only 375 or 750 nm, respectively. Observation of the 2C2P signal required temporal and spatial overlap of the 375 and 750 nm pulses. The amplitude of the signal depended on the polarization of each beam. 2C2P excitation can have applications in fluorescence microscopy and elsewhere when spatially localized excitation is desirable.  相似文献   

19.
 Two-photon absorption induced fluorescence microscopy was used as a tool for the examination of the spatial distribution of a thin dye film. The two-photon absorption induced fluorescence signal is essentially the same as that produced by excitation with a single photon of equivalent energy. When femtosecond pulses are focused into a sample there is an intrinsic spatial selectivity of the two-photon emission signal, since it is dependent upon the square of the light intensity. This has tremendous implications in fluorescence microscopy. Since two-photon absorption is confined in a small region at the focal waist of an objective lens, photodamage and photobleaching of the sample are significantly reduced. In addition, the two-photon signal has inherent z-axis spatial resolution, which facilitates the construction of 3-D images. In the present work an application of this technique to a thin film of a dye is presented. The method can generally be applied to thin films made from photonic polymers.  相似文献   

20.
本工作合成了具有D-π-A-π-D对称结构的化合物2,5-双(对二甲氨基苯乙烯基)吡嗪。利用飞秒激光器研究了2,5-双(对二甲氨基苯乙烯基)吡嗪的双光子吸收特性,获得了在820 nm处的最大双光子吸收截面(σ= 212 GM)。荧光发射强度与激发光强平方的线性关系证明了2,5-双(对二甲氨基苯乙烯基)吡嗪的双光子诱导发光机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号