共查询到5条相似文献,搜索用时 0 毫秒
1.
The generalized traveling salesman problem (GTSP) is a well-known combinatorial optimization problem with a host of applications. It is an extension of the Traveling Salesman Problem (TSP) where the set of cities is partitioned into so-called clusters, and the salesman has to visit every cluster exactly once. 相似文献
2.
The probabilistic traveling salesman problem is a well known problem that is quite challenging to solve. It involves finding the tour with the lowest expected cost for customers that will require a visit with a given probability. There are several proposed algorithms for the homogeneous version of the problem, where all customers have identical probability of being realized. From the literature, the most successful approaches involve local search procedures, with the most famous being the 2-p-opt and 1-shift procedures proposed by Bertsimas [D.J. Bertsimas, L. Howell, Further results on the probabilistic traveling salesman problem, European Journal of Operational Research 65 (1) (1993) 68–95]. Recently, however, evidence has emerged that indicates the equations offered for these procedures are not correct, and even when corrected, the translation to the heterogeneous version of the problem is not simple. In this paper we extend the analysis and correction to the heterogeneous case. We derive new expressions for computing the cost of 2-p-opt and 1-shift local search moves, and we show that the neighborhood of a solution may be explored in O(n2) time, the same as for the homogeneous case, instead of O(n3) as first reported in the literature. 相似文献
3.
Prasanna Balaprakash Mauro Birattari Thomas Stützle Marco Dorigo 《European Journal of Operational Research》2009
The probabilistic traveling salesman problem is a paradigmatic example of a stochastic combinatorial optimization problem. For this problem, recently an estimation-based local search algorithm using delta evaluation has been proposed. In this paper, we adopt two well-known variance reduction procedures in the estimation-based local search algorithm: the first is an adaptive sampling procedure that selects the appropriate size of the sample to be used in Monte Carlo evaluation; the second is a procedure that adopts importance sampling to reduce the variance involved in the cost estimation. We investigate several possible strategies for applying these procedures to the given problem and we identify the most effective one. Experimental results show that a particular heuristic customization of the two procedures increases significantly the effectiveness of the estimation-based local search. 相似文献
4.
An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem 总被引:1,自引:0,他引:1
In this paper, an ensemble of discrete differential evolution algorithms with parallel populations is presented. In a single populated discrete differential evolution (DDE) algorithm, the destruction and construction (DC) procedure is employed to generate the mutant population whereas the trial population is obtained through a crossover operator. The performance of the DDE algorithm is substantially affected by the parameters of DC procedure as well as the choice of crossover operator. In order to enable the DDE algorithm to make use of different parameter values and crossover operators simultaneously, we propose an ensemble of DDE (eDDE) algorithms where each parameter set and crossover operator is assigned to one of the parallel populations. Each parallel parent population does not only compete with offspring population generated by its own population but also the offspring populations generated by all other parallel populations which use different parameter settings and crossover operators. As an application area, the well-known generalized traveling salesman problem (GTSP) is chosen, where the set of nodes is divided into clusters so that the objective is to find a tour with minimum cost passing through exactly one node from each cluster. The experimental results show that none of the single populated variants was effective in solving all the GTSP instances whereas the eDDE performed substantially better than the single populated variants on a set of problem instances. Furthermore, through the experimental analysis of results, the performance of the eDDE algorithm is also compared against the best performing algorithms from the literature. Ultimately, all of the best known averaged solutions for larger instances are further improved by the eDDE algorithm. 相似文献
5.
We generalize the classical Fourier analysis of Gelfand pairs to the setting of groups acting not transitively on a set X. We use this analysis to determine the spectrum of several random walks on graphs. Moreover, as byproduct, we show that, for a new urn diffusion model, the cut-off phenomenon holds. 相似文献