首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We introduce a method for non-invasively mapping fiber orientation in materials and biological tissues using intermolecular multiple-quantum coherences. The nuclear magnetic dipole field of water molecules is configured by a CRAZED sequence to encode spatial distributions of material heterogeneities. At any given point r in space, we obtain the spherical coordinates of fiber orientation (theta,phi) with respect to the external field by comparing three signals ||G(X)||, ||(Y)||, and ||G(Z)|| (modulus), acquired with linear gradients applied along the X, Y, and Z axes, respectively. For homogeneous isotropic materials, a subtraction ||G(Z)|| - ||G(X)|| - ||G(Y)|| gives zero. With anisotropic materials, we find an empirical relationship relating ||G(Z)|| - ||G(X)|| - ||G(Y)||/(||G(X)|| + ||G(Y)|| + ||G(Z)||) to the polar angle theta, while ||G(X|| - ||G(Y)||/(||G(X)|| + ||G(Y)|| + ||G(Z)||) is related to the azimuthal angle phi. Experiments in structured media confirm the structural sensitivity. This technique can probe length scales not accessible by conventional MRI and diffusion tensor imaging.  相似文献   

3.
A three-dimensional examination of blood vessels is provided using MR data from seven cases. The vascular surfaces are constructed with an algorithm that automatically follows the selected artery or vein and generates a projected three-dimensional gradient shaded image. Fast 3DFT pulse sequences were optimized to enhance the time-of-flight contrast of the intravascular region. By increasing the surface threshold value in a three-dimensional head study, the flesh of a patient's face was peeled away to demonstrate the superfacial temporal artery. Gated cardiac images show the great vessels and cardiac chambers. A three-dimensional view of the aorta shows an irregular surface in the vicinity of an adrenal tumor. 3D MR exams provide a non-invasive technique for assessing vascular morphology in a clinical setting.  相似文献   

4.
An electropolished magnetic needle made of Nd(2)Fe(14)B permanent magnet was used for obtaining better spatial resolution than that achieved in our previous work. We observed the magnetic field gradient |G(Z)|=80.0G/microm and the field strength B=1250G at Z approximately 8.8 microm from the top of the needle. The use of this needle for three dimensional magnetic resonance force microscopy at room temperature allowed us to achieve the voxel resolution to be 0.6 microm x 0.6 microm x 0.7 microm in the reconstructed image of DPPH phantom. The acquisition time spent for the whole data collection over 64 x 64 x 16 points, including an iterative signal average by six times per point, was about 10 days.  相似文献   

5.
Access to Magnetic Resonance Imaging (MRI) across developing countries ranges from being prohibitive to scarcely available. For example, eleven countries in Africa have no scanners. One critical limitation is the absence of skilled manpower required for MRI usage. Some of these challenges can be mitigated using autonomous MRI (AMRI) operation. In this work, we demonstrate AMRI to simplify MRI workflow by separating the required intelligence and user interaction from the acquisition hardware. AMRI consists of three components: user node, cloud and scanner. The user node voice interacts with the user and presents the image reconstructions at the end of the AMRI exam. The cloud generates pulse sequences and performs image reconstructions while the scanner acquires the raw data. An AMRI exam is a custom brain screen protocol comprising of one T1-, T2- and T2*-weighted exams. A neural network is trained to incorporate Intelligent Slice Planning (ISP) at the start of the AMRI exam. A Look Up Table was designed to perform intelligent protocolling by optimizing for contrast value while satisfying signal to noise ratio and acquisition time constraints. Data were acquired from four healthy volunteers for three experiments with different acquisition time constraints to demonstrate standard and self-administered AMRI. The source code is available online. AMRI achieved an average SNR of 22.86 ± 0.89 dB across all experiments with similar contrast. Experiment #3 (33.66% shorter table time than experiment #1) yielded a SNR of 21.84 ± 6.36 dB compared to 23.48 ± 7.95 dB for experiment #1. AMRI can potentially enable multiple scenarios to facilitate rapid prototyping and research and streamline radiological workflow. We believe we have demonstrated the first Autonomous MRI of the brain.  相似文献   

6.
7.
8.
Nuclear magnetic resonance (NMR) may be used for monitoring temperature changes within samples based on measurements of relaxation times, the diffusion coefficient of liquids, proton resonance frequency or phase shifts. Such methods may be extended to the explicit measurement of the thermal diffusivity of materials by NMR imaging. A method based on measuring nuclear spin phase shifts or changes in the equilibrium nuclear magnetization has been developed for measuring transient thermal diffusion effects and thermal diffusivity with potential applications in NMR thermotherapy and materials science. In this method, a thermal pulse is applied to a medium, and the resultant temporal variations of the nuclear spin phase or of the magnitude of the nuclear magnetization produced by the thermal pulse are monitored at a spatial distance. The results obtained on common fluids agree well with the data from other methods.  相似文献   

9.
To evaluate the potential of magnetic resonance imaging (MRI) in detection and quantification of mitral regurgitation, 26 pts. with echocardiographically or angiographically documented mitral regurgitation were examined using a 0.5 Tesla superconducting magnet. In each patient a multislice-multiphase study in a sagittal-coronal double angulated projection (four-chamber view equivalent) was performed to assess left and right ventricular volumes, ejection fraction and regurgitant fraction. Additionally a blood flow sensitive cine-study (fast field echo: FFE) was done to visualize direction and area of regurgitant jet. MRI data were compared with quantitative and qualitative assessment of mitral regurgitation by angiography, 2D echocardiography, Doppler sonography and color flow mapping. Using the FFE mode MRI was able to detect the regurgitant jet as a typical signal loss within the left atrium in all patients. The ratio of regurgitant jet area/left atrium area as determined by MRI showed a correlation with a comparable ratio from color Doppler sonography of R = 0.87 (p < 0.001). There was also good agreement in semiquantitative grading of mitral regurgitation between MRI and angiography (R = 0.77, p < 0.001). The determination of left and right ventricular stroke volume allowed the calculation of the regurgitant fraction, which showed a correlation with invasively determined regurgitation fraction of R = 0.84 (p < 0.001). These data provide additional information that MRI may be useful as a noninvasive technique to detect and quantify mitral regurgitation.  相似文献   

10.
11.
12.
Evaluation of the prostate by magnetic resonance imaging   总被引:2,自引:0,他引:2  
Forty-seven male patients with suspected prostatic disease underwent magnetic resonance imaging (MRI) of the pelvis on a Picker resistive magnet operating at 0.15 T; 33 had histologically proved adenocarcinoma, 12 benign prostatic hypertrophy, 1 a transitional cell carcinoma, and 1 a seminoma. Eleven normal subjects also were included in the study. The study attempted to (1) define the MRI characteristics of the normal prostate, benign prostatic hypertrophy, and prostatic adenocarcinoma, (2) evaluate various pulse sequences in imaging the prostate, and (3) compare MRI findings with clinical, pathologic, and computed tomography results. Various pulse sequences, including inversion recovery and spin-echo with short and long TE and TR, were used. MRI was sensitive in detecting intracapsular and extracapsular prostatic disease. The finding of inhomogeneous signal texture throughout the gland was a sensitive but nonspecific finding for adenocarcinoma. A focal nodule with prolonged T1 and T2 relaxation times was the most specific MRI finding for adenocarcinoma. Extracapsular spread of neoplasm was often demonstrated, and because of its superior soft-tissue contrast ability, MRI was more accurate than computed tomography in delineating extracapsular extension.  相似文献   

13.
14.
Electric current-induced phase alternations have been imaged by fast magnetic resonance image (MRI) technology. We measured the magnetic resonance phase images induced by pulsed current stimulation from a phantom and detected its sensitivity. The pulsed current-induced phase image demonstrated the feasibility to detect phase changes of the proton magnetic resonance signal that could mimic neuronal firing. At the present experimental setting, a magnetic field strength change of 1.7 +/- 0.3 nT can be detected. We also calculated the averaged value of the magnetic flux density BT parallel to B0 produced by electric current I inside the voxel as a function of the wire position. The results of the calculation were consistent with our observation that for the same experimental setting the current-induced phase change could vary with location of the wire inside the voxel. We discuss our findings in terms of possible direct MRI detection of neuronal activity.  相似文献   

15.
《Comptes Rendus Physique》2010,11(2):136-148
Magnetic resonance imaging (MRI) and fast field-cycling (FFC) NMR are both well-developed methods. The combination of these techniques, namely fast field-cycling magnetic resonance imaging (FFC-MRI) is much less well-known. Nevertheless, FFC-MRI has a number of significant applications and advantages over conventional techniques, and is being pursued in a number of laboratories. This article reviews the progress in FFC-MRI over the last two decades, particularly in the areas of Earth's field and pre-polarised MRI, as well as free radical imaging using field-cycling Overhauser MRI. Different approaches to magnet design for FFC-MRI are also described. The paper then goes on to discuss recent techniques and applications of FFC-MRI, including protein measurement via quadrupolar cross-relaxation, contrast agent studies, localised relaxometry and FFC-MRI with magnetisation-transfer contrast.  相似文献   

16.
Magnetic resonance imaging (MRI) is very useful spectroscopy to visualize a three-dimensional (3D) real structure inside the sample without physical destruction. The spatial resolution of the readily available MRI spectrometer is, however, limited by a few ten to hundreds of microns due to a technological boundary of generating larger magnetic field gradient and to the insensitivity inherent to the inductive signal detection. Magnetic resonance force microscopy (MRFM) is new alternative MRI spectroscopy which is anticipated to significantly surpass the conventional MRI in both resolution and sensitivity. We report two imaging experiments on our MRFM spectrometer operated at room temperature and in vacuum approximately 10(-3)Pa. One is for approximately 20 microm liposome membrane labeled entirely by a nitroxide imaging agent and the other for approximately 15 microm DPPH particles, both are nearly the same size as that of human cell. The reconstructed images at spatial resolution approximately 1 microm were in satisfactory agreement with the scanning electron microscope images. The potential capability of visualizing intrinsic radicals in the cell is suggested to investigate redox process from a microscopic point of view.  相似文献   

17.
We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nm slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nm. This was achieved by force detection of the magnetic resonance, magnetic resonance force microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs created spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5K and 4T. The experiment was sensitive to sample volumes of 50 microm(3) containing approximately 4 x 10(11)71 Ga/Hz. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures.  相似文献   

18.
19.
20.
A hydrogen (1H) nuclear magnetic resonance (NMR) imaging study of the normal head, thorax, and limbs is reported. The images are 10 to 15 mm thick transverse slices obtained in 2 to 4 min using a two-dimensional Fourier transform technique. Spatial resolution in the imaging plane is about 2 mm, enabling the optic nerve and many small blood vessels to be observed. Thorax scans show details of the cardiac chambers, aorta wall, and lungs without artefacts arising from physiological motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号