共查询到18条相似文献,搜索用时 62 毫秒
1.
采用浸渍还原法制备了MgO负载纳米CuPd合金的复合催化剂(CuPd/MgO)。该催化剂在室温催化甲醛溶液重整产氢过程中表现出优异的催化性能,转换频率(TOF)高达812.6 h-1,分别是相同条件下Cu/MgO(TOF=356.7 h-1)和Pd/MgO(TOF=34.8 h-1)的2.3倍和23倍。基于实验测试和表征结果,发现CuPd/MgO催化剂中纳米CuPd合金与表面富集缺陷的MgO载体之间存在金属-载体强相互作用。这种相互作用能够促进氧气在催化剂表面吸附活化并生成活性氧物种(超氧阴离子自由基,·O2-),·O2-先后促进甲醛中的C—H键断裂和水分子的解离,随后与反应体系中生成的质子及氢自由基(·H)依次结合,最终实现氢气的析出与氧气的再生。 相似文献
2.
利用浸渍-还原法制备Bi OCl纳米片负载的钯纳米颗粒催化剂(Pd/Bi OCl),对室温催化氧化HCHO产氢性能进行了研究,并与纯Pd纳米颗粒催化效果进行了对比.研究结果表明,Pd/Bi OCl催化剂在有效降低贵金属Pd用量情况下(仅为2%wt),仍表现出比纯Pd纳米颗粒更高的催化HCHO产氢的性能.此外,通过进一步优化甲醛浓度、氢氧化钠浓度、氧气浓度和反应温度等参数,Pd/Bi OCl催化氧化HCHO产氢速率最高可达到200 m L/(min*gcatalyst).进一步研究结果表明,Pd/Bi OCl催化HCHO产氢反应的活化能仅为15.2 k J/mol,远低于无催化剂条件下甲醛产氢的活化能65 k J/mol. 相似文献
3.
Ni-Cu和MgO-SiO_2间的相互作用及其对催化性能的影响 总被引:2,自引:0,他引:2
本文用TPR,IR,TPD和TPSR等技术研究了以表面改性法制备的MgO-SiO2(MSO)表面复合物担载的Ni-CU合金间的相互作用及其对CO加氢反应催化性能的影响.结果表明,NiO-CuO与MSO间的相互作用导致部分MO与MSO形成表面物种从而使金属组分氧化物还原温度明显升高;还原后的Ni-Cu/MSO表面上存在着两类活性中心,即合金相中的Ni与载体相中的Mg2+(或Mg2+-O);在两类活性中心的协同作用下,CO吸附除有孪生、线式和桥式吸附态物种外,还有一种新的卧式吸附态(Ni...C=O→Mg2+).这种吸附态的活化程度较高,易在表面上发生裂解形成Ni-C和Mg2+-O,其中Ni-C是加氢反应的碳源;H2在催化剂表面上发生解离吸附形成Ni-H和Mg2+-OH,前者比较活泼,是加氢反应的氢原.CO加氢生成烃类的反应在Ni中心上按"表面碳"机理进行,其生成CZH4的选择性高于80%;H2O的生成反应按2(Mg2+-OH)-→Mg2++(Mg2+-O)+H2O方式进行. 相似文献
4.
通过光还原沉积法, 利用氧空位诱导作用, 在Ni掺杂的缺陷态TiO2纳米管阵列(TNT-Ni)上得到金属 Pd含量不同的Pd-TNT-Ni催化剂. 采用场发射扫描电子显微镜(SEM)、 X射线光电子能谱(XPS)、 紫外-可见 漫反射(UV-Vis DRS)、 表面光电压(SPV)、 光致发光光谱(PL)和电化学测试等表征手段, 探究了Pd与Ni掺杂的缺陷态TiO2纳米管阵列之间的强相互作用对其光吸收特性和载流子分离及传输效率的影响, 阐明了强相互 作用对材料光催化活性的调控机理, 提出了Pd增强Pd-TNT-Ni光催化性能的作用机理. 结果表明, 通过光还 原法制备的Pd纳米颗粒尺寸为10~20 nm的Pd120-TNT-Ni样品的光响应值为4.22 mA/cm2, 是未负载Pd样品光 响应值(1.14 mA/cm2)的3.7倍, 其具有最佳的平均产氢速率(5.16 mmol·g?1·h?1), 是TNT样品平均产氢速率 (0.45 mmol·g?1·h?1)的12倍, 表明Pd与缺陷态TiO2纳米管阵列之间的强相互作用驱动了载流子的分离及传输, 且Pd作为电子捕获势阱及反应活性位点, 显著提高了材料的光催化性能. 相似文献
5.
石油脑裂解制备的烯烃流中通常含有 ~1% 二烯烃或者炔烃,其含量必须降低到10 ppm以下以避免其对下游聚合催化剂的毒化作用.对这些副产物选择性加氢生成单烯烃是降低其含量最有前景的方法.Pd基催化剂具有高的加氢活性和选择性,是目前最为常用的加氢催化剂,但是它也存在高转化率下选择性较低和容易因积碳而失活的问题.合成Pd基双金属催化剂和对Pd催化剂进行氧化物包裹是目前最为常用的方法,但是这两种方法往往在提高选择性的同时,降低了Pd催化剂的加氢活性.本文利用原子层沉积(ALD)FeOx修饰Pd/Al2O3催化剂,在提高Pd催化剂选择性的同时,1,3-丁二烯选择性加氢活性也得到提高.表征结果发现,该样品中Pd负载量为1%,Fe负载量则随着原子层沉积FeOx周期增加而逐渐增加;催化剂中Pd颗粒大小约为7 nm,其表面并未观察到FeOx覆盖层;Pd,Fe元素分布表明FeOx在Pd颗粒表面生长.CO红外漫反射光谱也发现,随着ALD FeOx周期的增加,CO在Pd颗粒表面的吸附特征峰强度逐渐降低,表明FeOx逐渐覆盖Pd颗粒表面;与此同时,随着FeOx包裹周期的增加,CO吸附在Pd(111)面的特征吸收峰相对于其吸附在边角位的特征峰,降低得更为明显.这表明FeOx优先覆盖Pd(111)面,而选择性地将Pd低配位点暴露,与ALD Al2O3包裹Pd颗粒的结果恰恰相反.X射线光电子能谱分析表明,在所有催化剂中Fe均以+3价形式存在;同时,因为Pd-FeOx间存在强相互作用,所以随着FeOx包裹周期的增加,金属态Pd逐渐向高结合能方向移动,使表面Pd处于缺电子状态.随后,我们对不同FeOx周期包裹Pd催化剂进行了1,3-丁二烯加氢活性测试.在25 oC时Pd/Al2O3催化1,3-丁二烯转化率为6.7%;随着温度升高,转化率逐渐上升,至43 oC时达100%.相反,在26 oC时,30Fe/Pd/Al2O3对1,3-丁二烯的转化率为45%,远高于Pd/Al2O3催化剂;这可能是因为缺电子的Pd或Pd-FeOx界面存在所致.Pd/Al2O3催化剂在较低的转化率(<75%)下,1-丁烯、反式-2-丁烯和顺式-2-丁烯选择性分别为74%,20%和6%;随着转化率的增加(75%~90%),1-丁烯选择性急剧下降,丁烷选择性快速上升,反/顺-2-丁烯选择性也略有增加,表明此时次级反应1-丁烯加氢占主导,同时伴随着1-丁烯异构化反应;当转化率继续增加(>90%),1-丁烯,反/顺-2-丁烯加氢生成丁烷为主要反应,此时丁烷选择性急剧上升,至转化率为99%时,丁烯选择性仅为52%.而当Pd催化剂表面存在FeOx时,丁烯选择性随着FeOx周期增加而逐渐增加,尤其是在较高转化率下(>75%);对于30Fe/Pd/Al2O3催化剂,转化率为99%时,丁烯选择性高达95%.这主要是因为在高转化率下,FeOx将Pd颗粒表面分割成较小的Pd团簇,降低了Pd颗粒表面吸附氢气浓度,抑制了丁烯加氢反应,而次级反应1-丁烯异构化占主导,使得丁烯选择性不变. 相似文献
6.
催化甲酸分解产氢是氢气储存和氢能利用的重要途径。以对乙烯基吡啶和1,3,5-三(溴甲基)-2,4,6-三甲基苯为原料,通过季胺化和聚合,制备了树枝状离子聚合物微球。负载Pd纳米粒子后用于催化甲酸分解产氢。微球的离子交换性能、含N特性以及分子内部空穴使制备的Pd 纳米粒子具有高分散性、小尺寸、均一粒径和优化的电子结构。考察了甲酸浓度和反应温度对产氢速率的影响。结果表明,在50℃、甲酸浓度为1 M、甲酸与钯摩尔比为200、甲酸与甲酸钠摩尔比为3的优化反应条件下,甲酸完全分解时间为30 min。催化剂使用4次后活性无明显下降。 相似文献
7.
高效负载型Pd催化剂的制备及其在CO低温氧化反应中的机理探究是近年来的研究热点.普遍认为,Pd催化剂上的CO氧化反应遵循Langmuir-Hinshelwood机理:首先,CO吸附于Pd物种表面;然后,CO与催化剂表面的晶格氧发生反应转化为CO2,反应发生在金属-载体界面.另外,高分散的Pd活性物种有利于CO氧化反应.同时载体的形貌、暴露的晶面、氧空位以及孔结构等都是影响催化剂活性的重要因素.CeO2纳米管具有独特的管状特征和较高的比表面积,是一种潜在的CO低温氧化催化剂载体.本文利用乙醇还原法,以CeO2纳米管为载体,制备不同Pd含量的Pd/CeO2-nanotube纳米催化剂,并利用N2吸附脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、CO程序升温脱附(CO-TPD)、X射线光电子能谱(XPS)等表征手段,探索纳米催化剂载体形貌对CO氧化反应活性的影响.氮气吸脱附结果表明,Pd/CeO2-nanotube具有较高的比表面积(58.0 m2/g),且存在介孔结构.XRD表征发现,Pd/CeO2-nanotube的衍射峰对应立方萤石型结构的CeO2的(111),(200),(220),(311)等品面.TEM结果表明,Pd/CeO2-nanotube具有均匀的纳米管形貌,其外径为40-60 nm,Pd纳米颗粒均匀分散在其表面.CO-TPD结果表明,Pd/CeO2-nanotube在1 10℃附近具有很强的脱附峰,在370℃和600℃附近分别具有较宽和较弱的脱附峰,这表明该催化剂具有较多的吸附位,且具有很强的CO吸附能力;CO不可逆吸附量计算结果表明,该催化剂上的Pd具有很高的表面分散度(23.3%),Pd颗粒尺寸为7.3 nm.XPS表征显示,Pd以pd2+的形式分散于CeO2纳米管的表面,且与载体发生相互作用,存在Pd-O-Ce键;同时该催化剂表面存在丰富的Ce3+,为反应提供更多的氧空位.0.9Pd/CeO2-nanotube纳米催化剂在CO氧化反应中表现出优良的活性,能在100℃实现CO的完全转化;通过计算发现,该催化剂具有较高的TOF值(0.63 s-1),由Arrhenius 曲线可得到该催化剂的活化能为26.5 kJ/mol.综上可见:金属活性组分的尺寸和分散度、载体的结构特征、CO吸附能力以及金属-载体间的相互作用决定催化剂的性能.Pd/CeO2-nanotube的高比表面积有利于Pd的分散;其强CO吸附能力有利于CO吸附于Pd物种表面;催化剂表面丰富的Ce3+能为反应提供更多的氧空位,Pd-O-Ce键的形成能增强金属-载体间的相互作用,有利于CO与催化剂表面品格氧发生反应.同时催化剂介孔结构有利于反应气体和产物气体的吸附和扩散,因此,Pd/CeO2-nanotube纳米催化剂在CO氧化反应中表现出优良的活性. 相似文献
8.
设计开发绿色、可持续的生物质资源高效转化制化学品催化过程具有重要的科学与应用研究价值.生物质基平台分子糠醛在分子氧存在下与甲醇发生氧化酯化,提供了一条糠酸甲酯的"非石油基"合成新路线.该反应采用贵金属/非贵金属催化体系,目前通常需要引入K2CO3或CH3ONa等碱性添加剂,以提高催化氧化酯化反应活性和选择性;但是存在活性组分流失、生成副产物及污染环境等问题,阻碍了其进一步应用.探索高性能非贵金属催化剂,实现无碱条件下糠醛高效氧化酯化,对于提高该生物质路线竞争力与推动工业化进程具有重要意义. 相似文献
9.
甲烷作为一种清洁廉价的碳氢能源,广泛应用于运输业和其它工业领域.但是其本身是一种比二氧化碳导致全球变暖效应更强的温室气体,而且甲烷直接燃烧会产生其它污染物,比如一氧化碳、氮氧化物、未充分燃烧的碳氢化合物等.因此有必要开展有关甲烷催化燃烧的研究工作,以大幅度降低起燃温度,提高燃烧效率,有效地减少污染副产物的产生.由于具有较好的低温催化活性,Pd基催化剂常用于甲烷的催化燃烧.但是Pd基催化剂也存在一些亟需解决的问题,比如在催化燃烧过程中活性相结构不稳定.PdO通常被认为是碳氢化合物催化氧化中的活性相,但是在高温下PdO分解为Pd,导致催化活性下降.PdO遇到含水或硫的化合物时会生成惰性的Pd(OH)2或稳定的硫化物,造成活性物种的流失,从而降低催化剂的性能.如果在材料中添加另一种贵金属Pt,使之与Pd一起形成贵金属合金,则可提高其低温催化燃烧的活性,增加Pd基催化剂的热稳定性以及抗水和抗硫能力.另一方面,过渡金属氧化物价格便宜,热稳定性以及抗硫性较好,也常作为甲烷燃烧的催化剂.其中三氧化二锰由于具有可变的氧化态以及较好的储氧能力受到了广泛关注.本课题组采用KIT-6作为硬模板,先合成具有有序介孔结构的Mn2O3(meso-Mn2O3)纳米催化剂,然后通过聚乙烯醇(PVA)保护的液相共还原法分别制备meso-Mn2O3担载Pd,Pt及PdPt合金的纳米催化剂(x(PdyPt)/meso-Mn2O3;x=(0.10-1.50)wt%;Pd/Pt摩尔比(y)=4.9-5.1).XRD结果表明,合成的meso-Mn2O3具有立方相晶体结构.其BET比表面积为106 m2/g.由TEM照片可观察到粒径范围为2.1?2.8 nm的贵金属纳米颗粒均匀分散在meso-Mn2O3表面.通过XPS分析可知,结合能在529.6和531.2 eV的峰可分别归属于晶格氧(Olat)和表面吸附氧(Oads).Pd0和Pd2+以及Pt0和Pt2+也均可通过曲线拟合后进行分峰确定.XPS定量分析结果表明,样品的Oads/Olat摩尔比有如下顺序:1.41(Pd5.1Pt)/meso-Mn2O3(0.77)>1.40Pd/meso-Mn2O3(0.69)>0.72(Pd5.1Pt)/meso-Mn2O3(0.65)>1.42Pt/meso-Mn2O3(0.63)>0.07(Pd4.9Pt)/meso-Mn2O3(0.53)>0.07(Pd4.9Pt)/bulk-Mn2O3(0.52)>meso-Mn2O3(0.45),这与其催化活性的顺序一相致.该结果表明,高的吸附氧物种浓度有利于甲烷催化燃烧.负载Pd,Pt或PdPt以后的样品的表面吸附氧物种浓度显著提高,催化活性最好的1.41(Pd5.1Pt)/meso-Mn2O3样品具有最高的吸附氧物种浓度.负载PdPt合金可有效提高催化剂对甲烷燃烧的催化活性.1.41(Pd5.1Pt)/meso-Mn2O3催化剂的活性最好:在空速为20000 mL/(g.h)的条件下,甲烷燃烧的T10%,T50%和T90%分别为265,345和425oC.此外,还考察了引入一定量的SO2,CO2,H2O和NO对甲烷在1.41(Pd5.1Pt)/meso-Mn2O3催化剂上氧化反应的影响,发现引入少量的Pt可提高催化剂抗SO2,CO2和H2O的能力,但是NO对甲烷燃烧的还原效应也不可忽视.基于催化剂物化性质的表征结果和活性数据,我们认为1.41(Pd5.1Pt)/meso-Mn2O3优异的催化性能与其拥有高质量的三维有序多孔结构、高的吸附氧物种浓度、优良的低温还原性以及Pd-Pt合金与meso-Mn2O3载体之间的强相互作用有关. 相似文献
10.
采用导向剂共沉淀-水热法合成不同复合量3Ni-Al类水滑石(LDH)/酸化杭锦2#土载体前驱物.以液相还原-焙烧法制备不同Au负载量的Ni-Al复合氧化物/介孔杭锦2#土负载Au催化剂.采用电感耦合等离子体发射光谱(ICP-AES)、原子吸收光谱(AAS)、N2物理吸附-脱附、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)等手段对催化剂进行表征;并考察其催化CO氧化活性及稳定性.结果表明,3Ni-Al LDH在酸化杭锦2#土上复合均匀;其负载Au后经500℃空气气氛焙烧,催化剂具有介孔结构,Au颗粒分散均匀、平均粒径小于10 nm;Ni-Al LDH复合量增加有利于纳米Au分散并抑制其粒径增大,且纳米Au与载体间存在较强相互作用;随Ni-Al LDH复合量和Au负载量增加,负载Au催化剂催化活性提高,当Ni-Al LDH复合量15%(Ni 3.47%),Au负载量3%时,所得负载Au催化剂性能最佳:T50为48℃,80℃时CO转化率大于90%,180℃连续反应10 h,CO转化率保持100%,空气放置110 d后,虽然其低温活性有所下降,但120℃时,仍可实现CO转化率大于90%. 相似文献
11.
通过熔盐法制备TiB2载体,并采用简单的沉淀-沉积法制备了Co/TiB2磁性可回收纳米催化剂,用于室温催化氨硼烷(NH3BH3)溶液产氢及串联降解对硝基苯酚(4-NP)及偶氮染料酸性橙7(AO7)、酸性红1(AR1)和甲基橙(MO)等有机污染物。采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、振动样品磁强计等表征方法对催化剂的微观形貌和结构等进行分析。结果表明,Co纳米粒子均匀地分布在TiB2载体表面,晶粒尺寸约为40 nm,并且被TiB2载体包覆,具有典型的金属-载体强相互作用。Co/TiB2表现出优异的室温催化NH3BH3溶液产氢活性,产氢速率为565.8 molH2·molcat-1·h-1。在串联降解有机污染物反应中,Co/TiB2在7 min内催化4-NP氨基化的转化率接近100%,反应速率常数高达0.72 min-1;降解AO7的反应速率常数在3种偶氮染料中最高(0.34 min-1)。通过EPR-DMPO(EPR=电子顺磁共振,DMPO=5,5-二甲基-1-吡咯啉-N-氧化物)自由基捕获实验检测出Co/TiB2+NH3BH3催化体系中产生大量的氢自由基(·H)。得益于·H的强还原性,Co/TiB2+NH3BH3催化体系能够将4-NP氨基化为具有更高价值的对氨基苯酚(4-AP),同时能够还原偶氮染料分子中的显色基团偶氮基(—N=N—)。 相似文献
12.
13.
Formaldehyde decomposition is not only an attractive method for hydrogen production, but also a potential approach for gaseous formaldehyde removal. In this research, we prepare some assembled organoruthenium through coordination reaction between Ru(p-Cymene)Cl2 and bridge-linking ligands. It is a creative approach for Ru(p-Cymene)Cl2 conversion into heterogeneous particles. The rigidity of bridge-linking ligand enables assembled organoruthenium to have highly ordered crystalline structure, even show clear crystal lattice with spacing of 0.19 nm. XPS shows the N−Ru bond are formed between bridge-linking ligand and Ru(p-Cymene)Cl2. The assembled organoruthenium has high abundant active sites for formaldehyde decomposition at low temperature. The reaction rate could increase linearly with temperature and formaldehyde concentration, with a TOF of 2420 h−1 at 90 °C. It is promising for gaseous formaldehyde decomposition in wet air or nitrogen. Formaldehyde conversion is up to 95 % over Ru-DAPM is 4,4′-diaminodiphenylmethane at 90 °C in air. Gaseous formaldehyde decomposition is a two-steps process under oxygen-free condition. Firstly, formaldehyde dissolve in water, and be converted into hydrogen and formic acid through formaldehyde-water shift reaction. Then intermediate formic acid will further decompose into hydrogen and carbon dioxide. We also find formaldehyde decomposition is a synergetic catalysis process of oxygen and water in moist air. Oxygen is conducive to formic acid desorption and decomposition on the active sites, so assembled organoruthenium exhibit slightly higher conversion for formaldehyde decomposition in moist air. This work proposes a distinctive method for gaseous formaldehyde decomposition in the air, which is entirely different from formaldehyde photocatalysis or thermocatalysis oxidation. 相似文献
14.
氢有较高的能量密度,其能量转换过程可循环、零污染,是未来替代传统化石燃料的理想能源载体.甲醛相较于其它的氢载体,具有可规模制备、来源广泛、安全性高、易于输运、储存和转化的特点,已逐渐成为一种新的制氢原料.此外甲醛制氢技术还可以应用于其它对环境有一定毒性的有机化合物转变为清洁的氢的过程.我们较全面的总结了甲醛的工业化制备、催化转化制氢和催化剂的研究发展历程,详细介绍了近年来在相关领域的研究成果,分析对比了各种甲醛催化制氢技术的特点,并对未来甲醛制氢的发展前景进行了展望. 相似文献
15.
硼氢化钠(NaBH4)催化水解制氢是一项具备车载氢源应用前景的储氢/制氢一体化技术。本文介绍了该技术催化水解制氢的原理,综述了制氢催化剂、反应动力学、反应机理、反应装置的设计和反应副产物回收利用的最新研究进展,讨论了该技术研发中需解决的问题。水解制氢系统的实际应用需研发高效、耐久性负载型催化剂。制氢装置的设计应考虑反应热的综合利用、燃料电池产生的水循环利用及膜分离技术的应用。NaBH4的高效再生将降低其生产成本,实现NaBH4基水解制氢系统的商业化应用。 相似文献
16.
采用氧化还原法制备了MnOx催化剂,X射线衍射结果表明其主要为无定形结构.在甲醛和臭氧浓度分别为137和642mg/m3,相对湿度为56%(25oC),GHSV为2×105h-1条件下,MnOx催化剂上O3可将甲醛全部氧化为CO2,反应150min内甲醛转化率和CO2选择性一直保持在~100%.另外,当臭氧与甲醛的摩尔比约为2:3,即显著低于化学计量比时,CO2选择性仍可达~100%.采用傅里叶变换红外光谱仪在线分析了甲醛氧化反应产物,未检测到任何副产物,从而确认了MnOx催化剂上O3对甲醛的完全氧化. 相似文献
17.
采用水热法制备了介孔MgO作为催化剂的载体,并制备了介孔Ni/MgO催化剂。利用N2吸附-脱附、XRD、H2-TPR等对样品进行表征,并考察了介孔Ni/MgO催化水蒸气重整糠醛、生物质油模型物和两种商用生物质油制氢的活性。结果表明,在介孔Ni/MgO催化剂催化水蒸气重整糠醛制氢反应中,随着反应温度的提高,水蒸气重整糠醛中糠醛的转化率、氢气的产率和氢气的选择性,都呈现递增的趋势。在反应温度提高到600℃时,糠醛的转化率和氢气的产率分别达到94.9%和83.2%。Ni/MgO催化水蒸气重整二组分模拟生物质油,糠醛/乙酸、糠醛/羟基丙酮制氢的反应中,氢气的产率分别达到87.3%和86.8%,均高于水蒸气重整糠醛反应中氢气的产率。由此表明,乙酸或羟基丙酮的存在,提高了模拟生物质油中主要有机物组分糠醛的转化率,并相应地提高了氢气的产率。在水蒸气重整商用生物质油制氢反应中,随着反应物水碳比(S/C(molar ratio)=5、10、15、20、25)的提高,主要有机物的转化率、氢气的产率和选择性呈现出增加的趋势。在水碳比为20时,两种生物质油的主要有机... 相似文献
18.
采用简单的煅烧工艺合成了纳米硼化钴(CoB)晶体,并首次研究了纳米CoB晶体在氨硼烷溶液水解制氢过程中的催化活性。研究发现,纳米CoB晶体具有较高的催化活性,在室温条件下其转换频率(TOF)为35.3 molH2·molcat-1·min-1,优于同等条件下贵金属Pt催化剂(TOF=29.3 molH2·molcat-1·min-1)。此外,循环测试8次后纳米硼化物晶体的催化制氢性能没有发生衰减。进一步研究发现CoB表面的Co0物种是催化制氢的活性位点,而表面的B物种位点能够有效辅助Co0位点实现协同催化氨硼烷制氢。 相似文献