首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Substituted 5-nitrosoquinolin-8-amines were synthesized for the first time by amination of 5-nitrosoquinolin-8-ol with primary aliphatic amines. The amination of 5-nitrosoquinolin-8-ol with hexamethylenediamine afforded N1,N6-bis(5-nitrosoquinolin-8-yl)hexane-1,6-diamine. The resulting nitrosoquinolinamines were reduced with hydrazine hydrate over Pd/C to N8-alkylquinoline-5,8-diamines and N1,N6-bis-(5-aminoquinolin-8-yl)hexane-1,6-diamine.  相似文献   

2.
The vicarious nucleophilic substitution of hydrogen (VNS) reaction in electron-deficient nitroquinolines was studied. Properties of all new products have been characterized by several techniques: MS, HRMS, FTIR, GC-MS, electronic absorption spectroscopy, and multinuclear NMR. The structures of 4-chloro-8-nitroquinoline, 8-(tert-butyl)-2-methyl-5-nitroquinoline, 9-(8-nitroquinolin-7-yl)-9H-carbazole and (Z)-7-(9H-carbazol-9-yl)-8-(hydroxyimino)quinolin-5(8H)-one were determined by single-crystal X-ray diffraction measurements. The 9-(8-nitroquinolin-7-yl)-9H-carbazole and (Z)-7-(9H-carbazol-9-yl)-8-(hydroxyimino)quinolin-5(8H)-one illustrate the nitro/nitroso conversion within VNS reaction. Additionally, 9-(8-isopropyl-2-((8-isopropyl-2-methyl-5-nitroquinolin-6-yl)methyl)-5-nitrosoquinolin-6-yl)-9H-carbazole is presented as a double VNS product. It is postulated that the potassium counterion interacts with the oxygen on the nitro group, which could influence nucleophile attack in that way.  相似文献   

3.
Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure-activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC(50), but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2.  相似文献   

4.
The lutidine derivative (2,6-Me(2))(4-Bpin)C(5)H(2)N when combined with B(C(6)F(5))(3) yields a frustrated Lewis pair (FLP) which reacts with H(2) to give the salt [(2,6-Me(2))(4-Bpin)C(5)H(2)NH][HB(C(6)F(5))(3)] (1). Similarly 2,2'-(C(5)H(2)(4,6-Me(2))N)(2) and (4,4'-(C(5)H(2)(4,6-Me(2))N)(2) were also combined with B(C(6)F(5))(3) and exposed to H(2) to give [(2,2'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(4,6-Me(2))N][HB(C(6)F(5))(3)] (2) and [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))N] [HB(C(6)F(5))(3)] (3), respectively. The mono-pyridine-N-oxide 4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO formed the adduct (4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)(B(C(6)F(5))(3)) (4) which reacts further with B(C(6)F(5))(3) and H(2) to give [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)B(C(6)F(5))(3)] [HB(C(6)F(5))(3)] (5). In a related sense, 2-amino-6-CF(3)-C(5)H(3)N reacts with B(C(6)F(5))(3) to give (C(5)H(3)(6-CF(3))NH)(2-NH(B(C(6)F(5))(3))) (6). Similarly, the species, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine were reacted with B(C(6)F(5))(3) to give the products as (C(9)H(6)NH)(2-NHB(C(6)F(5))(3)) (7), (C(9)H(6)N)(8-NH(2)B(C(6)F(5))(3)) (8) and (C(5)H(3)(6-Me)NH)(2-OB(C(6)F(5))(3)) (9), respectively; while 2-amino-6-picoline, 2-amino-6-CF(3)-pyridine, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine react with ClB(C(6)F(5))(2) to give the species (C(5)H(3)(6-R)NH)(2-NH(ClB(C(6)F(5))(2))) (R = Me (10), R = CF(3) (11)) (C(9)H(6)NH)(2-NH(ClB(C(6)F(5))(2))) (12), (C(9)H(6)N)(8-NH(2)ClB(C(6)F(5))(2)) (13) and (C(5)H(3)(6-Me)NH)(2-OClB(C(6)F(5))(2)) (14), respectively. In a similar manner, 2-amino-6-picoline and 2-amino-quinoline react with B(C(6)F(5))(2)H to give (C(5)H(3)(6-Me)NH)(2-NH(HB(C(6)F(5))(2))) (15) and (C(9)H(6)NH)(2-NH(HB(C(6)F(5))(2))) (16). The corresponding reaction of 8-amino-quinoline yields (C(9)H(6)N)(8-NHB(C(6)F(5))(2)) (17). In a similar fashion, reaction of 2-amino-6-CF(3)-pyridine resulted in the formation of (18) formulated as (C(5)H(3)(6-CF(3))N)(2-NH(B(C(6)F(5))(2)). Finally, treatment of 15 with iPrMgCl gave (C(9)H(6)N)(2-NH(B(C(6)F(5))(2))) (19). Crystallographic studies of 1, 2, 4, 6, 7, 10, 11, 12 and 15 are reported.  相似文献   

5.
A new series of chalcones, pyrimidines, and imidazolinone is described; chalcones ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k , 4l , 4m , 4n , 4o ) were prepared from the lead 4‐[2‐(5‐ethylpyridin‐2‐yl)ethoxy]benzaldehyde. Pyrimidines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m , 5n , 5o ) were prepared from the reaction of chalcones and guanidine nitrate in alkali media. Imidazolinones ( 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j , 6k , 6l , 6m , 6n , 6o ) were synthesized from the reaction of pyrimidine and oxazolone derivatives (prepared by Erlenmeyer azlactone synthesis). The structures of the synthesized compounds were assigned on the basis of elemental analyses, IR, 1H‐NMR, and 13C‐NMR spectral data. All the products were screened against different strains of bacteria and fungi. Most of these compounds showed better inhibitory activity in comparison with the standard drugs. J. Heterocyclic Chem., (2011).  相似文献   

6.
The antioxidation activity of 5-substituted 6-methyluracils was quantitatively estimated in the model system of initiated radical-chain oxidation of 1,4-dioxane. The rate constants of the reactions of 1,4-dioxane peroxide radicals with 6-methyluracil (1), 6-methyl-5-piperidinouracil (2), 6-methyl-5-morpholinomethyluracil (3), 6-methyl-5-morpholinouracil (4), 6-methyl-5-methylaminouracil (5), 5-ethylamino-6-methyluracil (6), and 5-hydroxy-6-methyluracil (7) were measured. Among compounds 1–7, derivative 7 is most efficient with an inhibition rate constant of (5.2±0.1) · 104 L mol-1 s-1 (60 °C).  相似文献   

7.
Several diversity-oriented syntheses of N-fused polycyclic heterocycles have been demonstrated but most of them are based on point diversity within the same library and usually involve time-consuming sequential multistep syntheses, which also suffer from low yields and/or poor precursor scopes. We have developed a new strategy for the syntheses of skeletal diverse N-fused polycyclic compounds via an Ugi-type MCR followed by a CuI-catalyzed coupling reaction or tandem Pictet-Spengler reaction. This two-step sequence provides eight distinct skeleton of fused {6-5-5-6}, {5-5-5-6}, {6-5-6-6}, and {5-5-6-6} ring systems that have applications in medicinal chemistry and chemical genetics too.  相似文献   

8.
Two substituted quinazolinyl/imidazolyl-salicylic acids 5, 6 were synthesized by the reaction of 6-iodo-2-methylbenzoxazin-4-one/5-nitroimidazole with 5-aminosalicylic acid (5-ASA). Coupling of compounds 5 and 6 with different amino acid ester hydrochlorides, dipeptide and tripeptide methyl esters yielded novel quinazolino/imidazolopeptide derivatives 5a-f and 6a-g. The chemical structures of all newly synthesized compounds were confirmed by means of FT-IR, (1)H- and (13)C-NMR, MSand elemental analysis. Selected peptide ester derivatives were further hydrolyzed by using lithium hydroxide (LiOH) to afford the corresponding acid derivatives 5ba-da and 6e(a)-g(a). All peptide derivatives were assayed for antimicrobial and anthelmintic activities against eight pathogenic microbes and three earthworm species. Among the tested compounds, 5e,5d, 6e and their hydrolyzed analogs 5d(a) and 6e(a) exhibited higher antimicrobial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae and Candida albicans, and 5(a),6g and 6g(a) displayed better antifungal activity against the dermatophytes Trichophyton mentagrophytes and Microsporum audouinii. Moreover, 6f and its hydrolyzed derivative6f(a) showed good anthelmintic activity against Megascoplex konkanensis, Pontoscotex corethruses and Eudrilus eugeniea at dose of 2 mg mL(-1).  相似文献   

9.
A new series of azetidinones is described in this paper; Schiff base ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k , 4l , 4m , 4n , 4o ) were synthesized from 4‐[2‐(5‐ethylpyridin‐2‐yl)ethoxy]benzaldehyde, which was used to synthesize azetidinones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m , 5n , 5o ), ( 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j , 6k , 6l , 6m , 6n , 6o ), and ( 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j , 7k , 7l , 7m , 7n , 7o ). The structures of the synthesized compounds were assigned on the basis of elemental analysis, IR, 1H NMR, and 13C NMR spectral data. All the products were screened against different strains of bacteria and fungi. Most of the monosubstituted and disubstituted chloro groups are more effective to both bacterial and fungal species in comparison with the standard drugs.  相似文献   

10.
C6H5SO2 radicals were produced upon irradiation of three flowing mixtures: C6H5SO2Cl in N2, C6H5Cl and SO2 in CO2, and C6H5Br and SO2 in CO2, with a KrF excimer laser at 248 nm. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record the time-resolved infrared (IR) absorption spectra of reaction intermediates. Two transient bands with origins at 1087.7 and 1278.2 cm-1 are assigned to the SO2-symmetric and SO2-antisymmetric stretching modes, respectively, of C6H5SO2. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predict the geometry and vibrational wave numbers of C6H5SO2 and C6H5OSO. The vibrational wave numbers and IR intensities of C6H5SO2 agree satisfactorily with the observed new features. Rotational contours of IR spectra of C6H5SO2 simulated based on predicted molecular parameters agree satisfactorily with experimental results for both bands. The SO2-symmetric stretching band is dominated by a- and c-type rotational structures and the SO2-antisymmetric stretching band is dominated by a b-type rotational structure. When C6H5SO2Cl was used as a precursor of C6H5SO2, C6H5SO2Cl was slowly reproduced at the expense of C6H5SO2, indicating that the reaction Cl+C6H5SO2 takes place. When C6H5Br/SO2/CO2 was used as a precursor of C6H5SO2, features at 1186 and 1396 cm-1 ascribable to C6H5SO2Br were observed at a later period due to secondary reaction of C6H5SO2 with Br. Corresponding kinetics based on temporal profiles of observed IR absorption are discussed.  相似文献   

11.
The chemical dynamics to form the D5-diphenyl molecule, C6H5C6D5, via the neutral-neutral reaction of phenyl radicals (C6H5) with D6-benzene (C6D6), was investigated in a crossed molecular beams experiment at a collision energy of 185 kJ mol(-1). The laboratory angular distribution and time-of-flight spectra of the C6H5C6D5 product were recorded at mass to charge mz of 159. Forward-convolution fitting of our data reveals that the reaction dynamics are governed by an initial addition of the phenyl radical to the pi electron density of the D6-benzene molecule yielding a short-lived C6H5C6D6 collision complex. The latter undergoes atomic deuterium elimination via a tight exit transition state located about 30 kJ mol(-1) above the separated reactants; the overall reaction to form D5-diphenyl from phenyl and D6-benzene was found to be weakly exoergic. The explicit identification of the D5-biphenyl molecules suggests that in high temperature combustion flames, a diphenyl molecule can be formed via a single collision event between a phenyl radical and a benzene molecule.  相似文献   

12.
Nitration of 1,2-alkylenedioxybenzenes 1 furnished the respective nitro derivatives 3 and 4 in the relative ratios: 4a:3a /100:trace, 4b:3b /98:2.4, 4c:3c /86:14, 4e:3e /91:9 and 4f:3f /99:1.3. Nitration of 4 gave 5a:6a:8a /0:0:100, 5b:6b:8b /7.7:3.2:89, 5c:6c:8c /23:12:65, 5d:6d:8d /14:74:12, 5e:6e:8e /27:18:55 and 5f:6f:8f /23:7.0:70. Nitration of the isomeric 3 afforded the dinitro products 5, 6 and 7 in the following relative ratios: 5a:6a:7a /92:8:0, 5b:6b:7b /80:20:0, 5c:6c:7c /69:20:1 1, 5d:6d:7d /45:19:36, 5e:6e:7e /37:57:5.9 and 5f:6f:7f /64:36:0. Nitration of 3-nitro-1,2-dimethoxybenzene ( 9 ) furnished: 10:11 /63:37. Orientation as a function of the heterocyclic ring-size is discussed.  相似文献   

13.
Conclusions Oxidation of 2,4-diaminoazobenzene and its 5-methyl- and 5-butoxyderivatives with oxygen in the system copper(I) chloride-pyridine gives, in addition to polymers, mixtures of the corresponding bis(2-phenyl-1,2,3-triazolo)[4,5a:45h]phenazines and bis(2-phenyl-1,2,3-triazolo)[4, 5c:45g]-9,10-diazaphenanthrenes.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya., No. 6, pp. 1375–1380, June, 1988.  相似文献   

14.
Reductive elimination of C6F5-C6F5 from cis-[Pd(C6F5)2L] (L = cod, bpy, and dppb) was promoted by Br?nsted acids. HNO3 is a convenient acid for the formation of C6F5-C6F5 from [Pd(C6F5)2(cod)]. The products are controlled by the auxiliary ligand.  相似文献   

15.
A variety of pyrano[2,3‐d]pyrimidine‐5‐one derivatives 5 , 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 6 , 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j have been synthesized from 6‐amino‐4‐(substituted phenyl)‐5‐cyano‐3‐methyl‐1‐phenyl‐1,4‐dihydropyrano[2,3‐c]pyrazole derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j via cyclization using formic acid and acetic acid. All the newly synthesized compounds have been characterized by IR, 1H NMR, 13C NMR, and elemental analysis. All the synthesized compounds have been screened for antibacterial, antifungal and antitubercular activity. J. Heterocyclic Chem., (2012).  相似文献   

16.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

17.
A series of pyrimidine methyl and polyfluoroalkyl ethers were synthesized from the reactions of trifluoroamine oxide (1) with several 5-substituted uracils in the presence of tetrabutylammonium hydroxide and methanol, 2,2,2-trifluoroethanol (6), or 1H,1H-pentafluoropropanol (7). With 5-(trifluoromethyl)uracil (2), the new ethers formed were 5-fluoro-5-(trifluoromethyl)-6-methoxypyrimidine-2,4-dione (8), 5-fluoro-5-(trifluoromethyl)-6-(trifluoroethoxy)pyrimidine-2,4-dione (9), and 5-fluoro-5-(trifluoromethyl)-6-(1H,1H- pentafluoropropoxy)pyrimidine-2,4-dione (10). With 5-chlorouracil (3), the new ethers 5-chloro-5-fluoro-6-methoxypyrimidine-2,4-dione (11), 5-chloro-5-fluoro-6-(trifluoroethoxy)pyrimidine-2,4-dione (12), and 5-chloro-5-fluoro-6-(1H,1H-pentafluoropropoxy)pyrimidine-2,4-dione (13) were obtained. With 5-fluorouracil (4), the new ethers 5,5-difluoro-6-methoxypyrimidine-2,4-dione (14), 5,5-difluoro-6-(trifluoroethoxy)pyrimidine-2,4-dione (15) and 5,5 difluoro-6-(1H,1H-pentafluoropropoxy)pyrimidine-2,4-dione (16) were found. By reaction of 5-nitrouracil (5), the new ethers 5-nitro-5-fluoro-6 methoxypyrimidine-2,4-dione (17), 5-nitro-5-fluoro-6-(trifluoroethoxy)pyrimidine-2,4-dione (18), and 5-nitro-5-fluoro-6-(1H,1H-pentafluoropropoxy)pyrimidine-2,4-dione (19) were obtained. Each of the new compounds was characterized by using IR, 19F and 1H NMR, and mass spectroscopy, and elemental analysis. A single-crystal X-ray diffraction study of 8 was helpful in confirming compound structure.  相似文献   

18.
The title compounds 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h and 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h have been synthesized from β‐diketones and chromones, respectively, having 5‐methyl‐3‐phenylisoxazole moiety. Substituted 2‐acetylphenyl 5‐methyl‐3‐phenylisoxazole‐4‐carboxylate 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h were converted into 1‐(2‐hydroxyphenyl)‐3‐(5‐methyl‐3‐phenylisoxazole‐4‐yl)propane‐1,3‐dione 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h by Baker–Venketaraman transformation. Further, the cyclodehydration of diketone 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h with glacial acetic acid in conc. HCl at reflux gave corresponding substituted 2‐(5‐methyl‐3‐phenylisoxazole‐4‐yl)‐4H‐chromen‐4‐one 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h . The corresponding 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h react with hydrazine hydrate in presence of glacial acetic acid in ethanol at reflux to furnish 2‐(5‐5(5‐methyl‐3‐phenylisoxazole‐4‐yl)‐1H‐pyrazole‐3‐yl)phenol 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h . The structures of all newly synthesized compounds have been confirmed by IR, 1H NMR, mass spectral data, as well as elemental analysis. The synthesized compounds have been screened for their antimicrobial activity. Some of the compounds show better antimicrobial activity as compared with the reference drugs Streptomycin, Ampicillin, Gentamycin, Cefixime, and Ketoconazole.  相似文献   

19.
Pentacarbonyl-7H-indenediiron, [Fe2(CO)5(eta3,eta5-C9H8)] (1), reacts with aryllithium, ArLi (Ar = C6H5, p-C6H5C6H4), followed by alkylation with Et3OBF4 to give novel 7H-indene-coordinated diiron bridging alkoxycarbene complexes [Fe2{mu-C(OC2H5)Ar}(CO)4(eta4,eta4-C9H8)] (2, Ar = C6H5; 3, Ar = p-C6H5C6H4). Complexes 2 and 3 react with HBF4.Et2O at low temperature to yield cationic bridging carbyne complexes [Fe2(mu-CAr)(CO)4(eta4,eta4-C9H8)]BF4 (4, Ar = C6H5; 5, Ar = p-C6H5C6H4). Cationic 4 and 5 react with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complexes [Fe2{mu-C(H)Ar}(CO)4(eta4,eta4-C9H8)] (6, Ar = C6H5; 7, Ar = p-C6H5C6H4). The similar reactions of 4 and 5 with NaSC6H4CH3-p produce the bridging arylthiocarbene complexes [Fe2{mu-C(Ar)SC6H4CH3-p}(CO)4(eta4,eta4-C9H8)] (8, Ar = C6H5; 9, Ar = p-C6H5C6H4). Cationic 4 and 5 can also react with anionic carbonylmetal compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to give the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [Fe2{mu-C(Ar)NCM(CO)5}(CO)4(eta4,eta4-C9H8)] (10, Ar = C6H5, M = Cr; 11, Ar = p-C6H5C6H4, M = Cr; 12, Ar = C6H5, M = Mo; 13, Ar = p-C6H5C6H4, M = Mo; 14, Ar = C6H5, M = W; 15, Ar = p-C6H5C6H4, M = W). Interestingly, in CH2Cl2 solution at room temperature complexes 10-15 were transformed into the isomerized 7H-indene-coordinated monoiron complexes [Fe(CO)2(eta5-C9H8)C(Ar)NCM(CO)5] (16, Ar = C6H5, M = Cr; 17, Ar = p-C6H5C6H4, M = Cr; 18, Ar = C6H5, M = Mo; 19, Ar = p-C6H5C6H4, M = Mo; 20, Ar = C6H5, M = W; 21, Ar = p-C6H5C6H4, M = W), while complex 3 was converted into a novel ring addition product [Fe2{C(OC2H5)C6H4C6H5-p-(eta2,eta5-C9H8)}(CO)5] (22) under the same conditions. The structures of complexes 2, 6, 8, 14, 18 and 22 have been established by X-ray diffraction studies.  相似文献   

20.
7‐(6‐Azauracil‐5‐yl)‐isatin 1 was converted through its thiosemicarbazone 2 to 6‐(6‐azauracil‐5‐yl)‐2,3‐dihydro‐5H‐1,2,4‐triazino[5,6‐b]indol‐3‐thione 3 and through the thiosemicarbazone of appropriate isatinic acid to 2‐(2‐thio‐6‐azauracil‐5‐yl)‐6‐(6‐azauracil‐5‐yl)‐aniline 4. The course of the cyclocondensation of this compound was studied and the reaction was found to proceed in both possible ways, resulting in a mixture of compound 3 and regioisomer 6‐(2‐thio‐6‐azauracil‐5‐yl)‐2,3‐dihydro‐5H‐1,2,4‐triazino[5,6‐b]‐indol‐3‐one 5. Substituted aniline 4 was oxidized to 2,6‐bis‐(6‐azauracil‐5‐yl)‐aniline 7 , which served for the preparation of hydrazone 8 , cyclization of which led to 1‐[2,6‐bis‐(6‐azauracil‐5‐yl)‐phenyl]‐6‐azauracil‐5‐carbonitrile 9. This is the first tricyclic 6‐azauracil with vicinal arrangement of 6‐azauracil rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号