共查询到20条相似文献,搜索用时 15 毫秒
1.
The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse particle shape(i.e.,roundness)on the macroscopic and microscopic shear behaviours of cohesionless mixed soils with various fines contents(FCs)was investigated via the discrete element method in this study.The shapes of coarse particles were formed using the rotation-invariant spherical harmonic method proposed by previous investigators.An equation was proposed to predict the initial void ratios of samples in this study.A decrease in the roundness of coarse particles can increase the peak friction angle(FC≤40%)and critical friction angle(FC≤30%).As the roundness of coarse particles decreases,the peak dilatancy angle initially increases and then decreases(FC≤20%).Furthermore,it was found that the roundness of coarse particles hardly affects the classification of cohesionless mixed soils,as determined by probing the percentage contributions of coarse-coarse,coarse-fine,and fine-fine contacts.When cohesionless mixed soils change from an underfilled structure to an interactive-underfilled structure at the critical state,the main forms of coarse-coarse contacts were discovered.Additionally,the force-fabric anisotropy mechanisms of the influences of the roundness and rolling resistance coefficient of coarse particles on the shear strengths of cohesionless mixed soils were found to be different. 相似文献
2.
《Particuology》2015
Particle interactions play a significant role in controlling the performance of dry powder inhalers (DPIs), which mainly arise through van der Waals potentials, electrostatic interactions, and capillary forces. Our aim is to investigate the influence of electrostatic charge on the performance of DPIs as a basis for improving the formulation of the particle ingredients. The mixing process of carrier and active pharmaceutical ingredient (API) particles in a vibrating container is investigated using a discrete element method (DEM). The number of API particles attaching to the carrier particle (i.e., contact number) increases with increasing charge and decreases with increasing container size. The contact number decreases with increasing vibrational velocity amplitude and frequency. Moreover, a mechanism governed by the electrostatic force is proposed for the mixing process. This mechanism is different from that previously proposed for the mixing process governed by van der Waals forces, indicating that long-range and short-range adhesive forces can result in different mixing behaviours. 相似文献
3.
Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simulations and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The particle profiles predicted by 2D DEM simulation were compared with the experimental results from a quasi-2D drum, showing inconsistency due to reduction of contacts in the single-layer 2D simulation which makes the driving friction weaker than that in the quasi-2D test, better results could be rea... 相似文献
4.
For studying particle trajectories in saltation, a measurement method has been developed. Results have been obtained by recording
particles in motion at 25 images per second and by analysing images using processing software which enables complete trajectories
to be reconstructed. Some average trajectory characteristics have been deduced and compared with those found in the literature.
Received: 7 March 1996 / Accepted: 25 September 1996 相似文献
5.
质砂作为一种建筑材料,近年来广泛应用于我国南海岛礁工程建设中。本文通过建立考虑钙质砂真实颗粒形状和颗粒破碎的胶结钙质砂离散元模型,研究了二维剪切条件下试样的宏微观力学行为,包括应力-应变行为、颗粒破碎、胶结破坏、位移场和裂纹随剪应变的演化规律,讨论了颗粒形状、颗粒粒径范围、颗粒强度和水泥胶结强度对胶结钙质砂力学行为的影响规律。结果表明,钙质砂颗粒粒径区间越宽,胶结钙质砂的强度越高。同一级配条件下,考虑真实颗粒形状的胶结钙质砂试样比圆颗粒试样的强度更高,试样总体颗粒破碎率也更高。钙质砂颗粒的强度越高,胶结钙质砂的性能越好。但是提高水泥的强度对胶结钙质砂力学性能的影响并不显著。本文的研究结果可为实际工程中钙质砂的加固提供理论依据。 相似文献
6.
Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study
Deposition and entrainment of particles in turbulent flows are crucial in a number of technological applications and environmental processes. We present a review of recent results from our previous works, which led to physical insights on these phenomena. These results were obtained from a systematic numerical study based on the accurate resolution – Direct Numerical Simulation via a pseudo-spectral approach – of the turbulent flow field, and on Lagrangian tracking of particles under different modelling assumptions. We underline the multiscale aspect of wall turbulence, which has challenged scientists to devise simple theoretical models adequate to fit experimental data, and we show that a sound rendering of wall turbulence mechanisms is required to produce a physical understanding of particle deposition and re-entrainment. This physical understanding can be implemented in more applied simulation techniques, such as Large-Eddy Simulation. Our arguments are based also on the phenomenology of coherent structures and on the examination of flow topology in connection with particle preferential distribution. Starting from these concepts, reasons why theoretical predictions may fail are examined together with the requirements which must be fulfilled by suitable predictive models. 相似文献
7.
DEM prediction of industrial and geophysical particle flows 总被引:2,自引:0,他引:2
Paul W. Cleary 《中国颗粒学报》2010,8(2)
Simulation of industrial particle flows using DEM (Discrete Element Method) offers the opportunity for better understanding of the flow dynamics by the inclusion of particle scale physics that often determine the nature of these flows. Increased understanding from the models can lead to improvements in equipment design and operation, potentially leading to large increases in equipment and process efficiency, throughput and/or product quality. Industrial applications are typically large and involve complex p... 相似文献
8.
液体碳氢燃料云雾爆轰特性的实验研究 总被引:1,自引:1,他引:1
采用升降法和烟迹技术在立式激波管中分别实测了液态燃料(环氧丙烷、硝酸异丙酯、己烷、C5~C6、庚烷、癸烷)与空气混合物直接起爆的临界起爆能和胞格尺寸。数据表明,气液两相云雾爆轰的临界起爆能与当量比呈U形曲线关系,这与气相爆轰得到的结论是一致的;临界起爆能的最小值并不是对应于等化学当量的混合物而是偏向于富燃料;根据三波点运动的烟迹记录,分析了云雾爆轰作用机制,认为液滴的碎解、汽化过程以及燃烧区前导是控制气液两相云雾爆轰的主要步骤。此外,还测定了无限空间下可燃气云的临界起爆能,并将激波管内得到的临界起爆能数据外推到无约束气云的临界起爆能,理论推算结果与实验值吻合较好。 相似文献
9.
We investigated the macro-and micro-mechanical properties of rigid-grain and soft-chip mixtures(GCMs)through numerical simulations using the discrete element method.We present a novel framework for the discrete modeling of soft chips and rigid grains in conjunction with calibration processes.Several numerical triaxial tests were also performed on GCMs with 0%,10%,20%,and 30%volumetric chip contents,P.The simulation results demonstrate that increasing P leads to higher GCM toughness,higher deviatoric peak stress,and higher corresponding shear strain.Higher P also contributes to more volume contraction and less dilation.The friction angles at both the peak and residual state significantly increase with increasing P.In view of the micro-mechanical features,strong contact force chains develop along the loading direction,which results in considerable anisotropy in the peak and residual states.Both the formation of strong force chains and rotation of grains decrease with increasing P,whereas the grain sliding percentage increases.The tensile force is mobilized with shearing and higher P leads to less mobilization of the tensile force.These findings are useful for better understanding the internal structure of GCMs with different soft-chip contents,especially in granular mixture mechanics and geomechanics. 相似文献
10.
The relationship between critical state and particle shape corresponds to the most fundamental aspect of the mechanics of granular materials. This paper presents an investigation into this relationship through macro-scale and micro-scale laboratory experiments in conjunction with interpretation and analysis in the framework of critical state soil mechanics. Spherical glass beads and crushed angular glass beads of different percentages were mixed with a uniform quartz sand (Fujian sand) to create a sequence of mixtures with varying particle shape. On the micro-scale, particle shape was accurately measured using a laser scanning technique, and was characterized by aspect ratio, sphericity and convexity; a new shape index, taken as the average of the three shape measures and referred to as overall regularity, was proposed to provide a collective characterization of particle shape. On the macro-scale, both undrained and drained triaxial tests were carried out to provide evidence that varying particle shape can alter the overall response as well as the critical states in both stress space and volumetric compression space. The mixtures of Fujian sand and spherical glass beads were found to be markedly more susceptible to liquefaction than the mixtures of Fujian sand and crushed angular glass beads. The change in liquefaction susceptibility was shown to be consistent with the change in the position of the critical state locus (CSL) in the compression space, manifested by a decrease in the intercept and gradient of the CSL due to the presence of spherical glass beads. Quantitative relationships have been established between each of the critical state parameters and each of the shape parameters, thereby providing a way to construct macro-scale constitutive models with intrinsic micro-scale properties built in. 相似文献
11.
12.
Calibration of granular material parameters for DEM modelling and numerical verification by blade-granular material interaction 总被引:1,自引:0,他引:1
The discrete element method (DEM) is a promising approach to model blade-granular material interactions. The accuracy of DEM models depends on the model parameters. In this study, a calibration process was developed to determine the parameter values. The particle size was the same as the real material and the particle shape was modelled using two spherical particles rigidly clumped together to form a single grain. Laboratory shear tests and compressions tests were used to determine the material internal friction angle and stiffness, respectively. These tests were replicated numerically using DEM models with different sets of particle friction coefficients and particle stiffness values. The shear test results are found to be dependent on both the particle friction coefficient and the particle stiffness. The compression test results show that it is only dependent on the particle stiffness. The combination of shear test and compression test results can be used to determine a unique set of particle friction and particle stiffness values. The calibration process was validated experimentally and numerically by modelling a blade moving through granular material. Results show that the forces acting on the blade can be accurately modelled with DEM and the maximum error is found to be 26%. The relative particle-blade displacements were used to predict the position and shape of the shear lines in front of the blade. A good qualitative correlation was achieved between the experiments and the DEM simulations. 相似文献
13.
An improved hybrid particle image velocimetry (PIV)/particle tracking velocimetry technique is presented. The method uses
a conventional autocorrelation for a predictor step followed by local cross-correlations of individual particles to obtain
individual particle pair displacements within a double-exposed single-frame image. Simulated particle fields are used to demonstrate
the improved tracking success (better than 90%, even in very dense particle fields) and accuracy of the technique as compared
to an existing single-frame hybrid method. In addition, the number of erroneous measured pairs is reduced. The improved success
is attributed to the ability of the algorithm to differentiate between overlapped particles and the criteria for correctly
identifying overlapped particles are presented. As a check on the effect on derived quantities, computed values before and
after resolution enhancement from a real image with constant vorticity and dilatation are presented. Application of this method
to a turbulent non-premixed flame shows about a factor of six increase in the resolution over conventional PIV.
Received: 24 October 1997/Accepted: 4 November 1998 相似文献
14.
In this paper experimental study and mathematical modelling of newly designed vibro-impact moling rig are presented. The design is based on electro-mechanical interactions of a conductor with an oscillating magnetic field. The rig consists of a metal bar placed within a solenoid which is connected to an RLC circuit, and an obstacle block positioned nearby. Both the solenoid and the block are attached to a base board. Externally supplied alternating voltage causes the bar to oscillate and hit the block resulting in the forward motion of the base board mimicking a mole penetration through the soil. By varying the excitation voltage and the capacitance in the circuit, a variety of system responses can be obtained.In the paper the rig design and experimental procedure are explained in detail, and the mathematical modelling of the rig is described. Then the obtained coupled electro-mechanical equations of motion are integrated numerically, and a comparison between experimental results and numerical predictions is presented. 相似文献
15.
Two approaches are widely used to describe particle systems: the continuum approach at macroscopic scale and the discrete approach at particle scale. Each has its own advantages and disadvantages in the modelling of particle systems. It is of paramount significance to develop a theory to overcome the disadvantages of the two approaches. Averaging method to link the discrete to continuum approach is a potential technique to develop such a theory. This paper introduces an averaging method, including the theory and its application to the particle flow in a hopper and the particle-fluid flow in an ironmaking blast furnace. 相似文献
16.
《Particuology》2023
Vibrating flip-flow screens (VFFS) with stretchable polyurethane sieve mats have been widely used in screening fine-grained materials in recent years. In this work, the discrete element method (DEM) is used to study the screening process in VFFS to explain particle flow and separation behavior at the particle scale. Unlike traditional vibrating screens, for VFFS, the amplitude response of each point on the elastic sieve mat is different everywhere. This study measures the kinematics of the elastic sieve mat under different conditions such as different stretched lengths and material loads. To establish the elastic sieve mat model in a DEM simulation, the continuous elastic sieve mat is discretized into multiple units, and the displacement signal of each unit tested is analyzed by Fourier series. The Fourier series analysis results of each unit are used as the setting parameters for motion. In this way, the movement of the elastic sieve mat is approximately simulated, and a DEM model of VFFS is produced. Through the simulation, the flow and separation of different-sized particles in VFFS are studied, and the reasonability of the simulation is verified by a pilot-scale screening experiment. The present study demonstrates the potential of the DEM method for the analysis of screening processes in VFFS. 相似文献
17.
H.W. Chandler C.M. Sands J.H. Song P.J. Withers S.A. McDonald 《International Journal of Solids and Structures》2008,45(7-8):2056-2076
This paper develops a mechanistic model of granular materials that can be used with a commercial finite element package (ABAQUS). The model draws on the ideas of critical state soil mechanics and combines them with the theory of envelopes to develop an elasto-plastic model with a non-associated flow rule. The model incorporates both local deformation at the granule contacts, and rearrangement of the granules so that jointly they account for any bulk deformation. The mechanics of the model closely reflect the physicality of the material behaviour and the model parameters are closely linked (although not simplistically identical) to the characteristics of the granules. This not only gives an insight into the material behaviour, but also enables the model to be used to facilitate design of the material, its processing properties and, hence, component development. The model is used to simulate drained triaxial tests, settlement of a powder in a bin, and some examples of die pressing. Simulations are compared with experimental data and with predictions obtained using other models. 相似文献
18.
开展了球形、锥形和平头3种典型形状落石撞击垫层的冲击力及侵入深度的试验研究。结果表明,落石形状对冲击试验结果有显著影响:相同条件下,平头落石的冲击力最大,侵入深度和冲击力峰值时间最短,锥形落石反之,而球形落石介于两者之间。采用无量纲化分析方法,将落石的质量、速度、形状、特征尺寸,垫层的强度、密度转换为无量纲强度冲击因子I、密度冲击因子λ和形状冲击因子ψ,并对冲击因子与侵入深度的试验数据进行了相关性分析,结果表明:(1)冲击因子I和λ在决定最终侵深zm/d 中所起到的作用比较相近;(2)冲击因子I和λ对侵入深度的影响分析表明,I和λ的相对独立性较强,相互影响较小,在不同的λ值下,I对侵入深度的影响规律基本一致。 相似文献
19.
The ignition of hydrogen-air mixtures by a stationary hot glow plug has been experimentally investigated using two-color pyrometry and interferometry. The ignition process was characterized by the surface temperature at ignition, as well as by the location where the initial flame kernel was formed. The experimental results indicate that: (i) the ignition temperature threshold is a function of equivalence ratio; (ii) the ignition location is a function of the rate at which the glow plug is heated because high heating rates favor non-uniform heating. As a result, ignition occurs on the side rather than near the top face of the glow plug. Comparison with two-dimensional numerical simulations exhibits discrepancies in terms of the temperature threshold value and dependence on equivalence ratio. Simulations performed imposing a non-uniform surface temperature show that a temperature difference between the side and the top of the glow plug as low as 12.5 to 25 K resulted in side ignition for hydrogen-air mixtures. The effect of surface chemistry was estimated numerically by imposing a boundary condition of zero species concentration for intermediate species, H and HO2, at the hot surface, which increased the ignition threshold by up to 50 K for an initial H2 concentration of 70%. The present study shows that surface temperature non-uniformity, heterogeneous chemistry and reaction model used, could influence the experimentally reported and numerically predicted ignition threshold as well as the location of ignition. 相似文献
20.
Granular materials composed of different-sized grains may experience undesired segregation.Segrega-tion is detrimental for a lot of industries because it leads ... 相似文献