首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The criteria for the onset of natural convection in a rotating liquid layer with nonuniform volumetric energy sources from absorbed thermal radiation are determined via linear stability analysis. The linearized perturbation equations are solved by using a numerical technique to obtain the eigenvalues that governs the onset of convection in a microgravity environment. The stability criteria are obtained in terms of the Marangoni number as function of the optical thickness. The influences of the Rayleigh number, Taylor number, Bond number, Crispation number, and Biot number on convection are examined in detail. These parameters provide a relationship between the critical Marangoni number and the Coriolis force, the buoyancy force, the interfacial tension, and the heat transport mechanisms.  相似文献   

2.
The Coriolis effect on a solidifying mushy layer is considered. A near-eutectic approximation and large far-field temperature is employed in the current study for large Stefan numbers. The linear stability theory is used to investigate analytically the Coriolis effect on convection in a rotating mushy layer for a new formulation of the Darcy equation. It was found that a large Stefan number scaling allows for the presence of both the stationary and oscillatory modes of convection. In contrast to the problem of a stationary mushy layer, rotating the mushy layer has a stabilising effect on convection. It was observed that increasing the Taylor number or the Stefan number encouraged the oscillatory mode of convection.  相似文献   

3.
Double diffusive convection in a fluid-saturated rotating porous layer heated from below and cooled from above is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and non-linear stability analyses. The Darcy model that includes the time derivative and Coriolis terms is employed as momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal and solute diffusions that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number and Taylor number on the stability of the system is investigated. The non-linear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out.  相似文献   

4.
We investigate the convection amplitude in an infinite porous layer subjected to a vibration body force that is collinear with the gravitational acceleration and heated from below. The analysis focuses on the specific case of low frequency vibration where the frozen time approximation is used. The results reveal that for moderate Vadasz numbers, increasing the magnitude of the acceleration stabilizes the convection. The results of the large Vadasz number analysis reveals that the acceleration plays a passive role in the stability of convection and the classical stability criteria for Rayleigh–Benard convection applies.  相似文献   

5.
The linear stability of thermal convection in a rotating horizontal layer of fluid-saturated porous medium, confined between two rigid boundaries, is studied for temperature modulation, using Brinkman’s model. In addition to a steady temperature difference between the walls of the porous layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. The combined effect of rotation, permeability and modulation of walls’ temperature on the stability of flow through porous medium has been investigated using Galerkin method and Floquet theory. The critical Rayleigh number is calculated as function of amplitude and frequency of modulation, Taylor number, porous parameter and Prandtl number. It is found that both, rotation and permeability are having stabilizing influence on the onset of thermal instability. Further it is also found that it is possible to advance or delay the onset of convection by proper tuning of the frequency of modulation of the walls’ temperature.  相似文献   

6.
The linear stability theory is used to investigate analytically the Coriolis effect on centrifugally driven convection in a rotating porous layer. The problem corresponding to a layer placed far away from the axis of rotation was identified as a distinct case and therefore justifying special attention. The stability of the basic centrifugally driven convection is analysed. The marginal stability criterion is established as a characteristic centrifugal Rayleigh number in terms of the wavenumber and the Taylor number.  相似文献   

7.
无网格Taylor最小二乘(MFLS)稳定化方案可有效地消除无网格Galerkin方法求解对流占优问题时产生的数值伪振荡,但当对流作用很强或纯对流时,它的求解效果不尽人意.因此,本文基于MFLS稳定化方案给出了一种自适应节点加密技术.该技术将无网格方法中背景积分单元作为自适应节点加密时物理量梯度指标的控制单元,并计算该控制单元上的物理量梯度指标;然后将其与给定的物理量梯度指标限进行比较,标识出大梯度区域从而进行自适应节点加密.数值实验表明,当求解对流作用很强的问题或纯对流问题时,这种基于MFLS稳定化方案的自适应节点加密技术不仅能有效地标示出数值振荡区域,而且可以彻底地消除数值伪振荡.  相似文献   

8.
We consider the solidification of a binary alloy in a mushy layer subject to Coriolis effects. A near-eutectic approximation and large far-field temperature is employed in order to study the dynamics of the mushy layer with a Stefan number of unit order of magnitude. The weak nonlinear theory is used to investigate analytically the Coriolis effect in a rotating mushy layer for a new moderate time scale proposed by the author. It is found that increasing the Taylor number favoured the forward bifurcation.  相似文献   

9.
The stability of a fluid-saturated horizontal rotating porous layer subjected to time-periodic temperature modulation is investigated when the condition for the principle of exchange of stabilities is valid. The linear stability analysis is used to study the effect of infinitesimal disturbances. A regular perturbation method based on small amplitude of applied temperature field is used to compute the critical values of Darcy–Rayleigh number and wavenumber. The shift in critical Darcy–Rayleigh number is calculated as a function of frequency of modulation, Taylor number, and Darcy–Prandtl number. It is established that the convection can be advanced by the low frequency in-phase and lower-wall temperature modulation, where as delayed by the out-of-phase modulation. The effect of Taylor number and Darcy–Prandtl number on the stability of the system is also discussed. We found that by proper tuning of modulation frequency, Taylor number, and Darcy–Prandtl number it is possible to advance or delay the onset of convection.  相似文献   

10.
We investigate natural convection in a fluid saturated rotating anisotropic porous layer subjected to centrifugal gravitational and Coriolis body forces. The Darcy model (including the centrifugal, gravitational and Coriolis terms; and permeability anisotropy effects) and a modified energy equation (including the effects of thermal anisotropy) is used in the current analysis. The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection in the presence of thermal and mechanical anisotropy. It is shown that the preferred solution comprises roll cells aligned parallel to the vertical z-axis. As a result, it is found that the Coriolis acceleration (or Taylor number) and the gravitational term play no role in the stability of convection.  相似文献   

11.
The coriolis effect on a solidifying mushy layer is considered. A near-eutectic approximation and large far-field temperature is employed in the current study for moderate Stefan numbers. The linear stability theory is used to investigate analytically the Coriolis effect on convection in a rotating mushy layer for a new formulation of the Darcy equation. It was found that only stationary convection is possible for moderate Stefan numbers. In contrast to the problem of a stationary mushy layer, rotating the mushy layer has a stabilizing effect on convection. It was also discovered that fot Taylor numbers larger than three (i.e., Ta > 3),increasing the retardability coefficient (hence increasing the solid fraction) destablished the convection.  相似文献   

12.
The coupled buoyancy and thermocapillary instability, the Bénard–Marangoniproblem, in an electrically conducting fluid layer whose upper surface is deformed and subject to a temperature gradient is studied. Both influences of an a.c. electric field and rotation are investigated. Special attention is directed at the occurrence of convection both in the form of stationary motion and oscillatory convection. The linear stability problem is solved for different values of the relevant dimensionless numbers, namely the a.c. electric Rayleigh number, the Taylor, Rayleigh, Biot, Crispation and Prandtl numbers. For steady convection, it is found that by increasing the angular velocity, one reinforces the stability of the fluid layer whatever the values of the surface deformation and the applied a.c. electric field. We have also determined the regions of oscillatory instability and discussed the competition between both stationary and oscillatory convections. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The linear and non-linear stability of a rotating double-diffusive reaction–convection in a horizontal anisotropic porous layer subjected to chemical equilibrium on the boundaries is investigated considering a Darcy model that includes the Coriolis term. The effect of Taylor number, mechanical, and thermal anisotropy parameters, reaction rate, solute Rayleigh number, Lewis number, and normalized porosity on the stability of the system is investigated. We find that the Taylor number has a stabilizing effect, chemical reaction may be stabilizing or destabilizing and that the anisotropic parameters have significant influence on the stability criterion. The effect of various parameters on the stationary, oscillatory, and finite-amplitude convection is shown graphically. A weak nonlinear theory based on the truncated representation of Fourier series method is used to find the finite amplitude Rayleigh number and heat and mass transfer.  相似文献   

14.
The effect of temperature modulation on the onset of double diffusive convection in a sparsely packed porous medium is studied by making linear stability analysis, and using Brinkman-Forchheimer extended Darcy model. The temperature field between the walls of the porous layer consists of a steady part and a time dependent periodic part that oscillates with time. Only infinitesimal disturbances are considered. The effect of permeability and thermal modulation on the onset of double diffusive convection has been studied using Galerkin method and Floquet theory. The critical Rayleigh number is calculated as a function of frequency and amplitude of modulation, Vadasz number, Darcy number, diffusivity ratio, and solute Rayleigh number. Stabilizing and destabilizing effects of modulation on the onset of double diffusive convection have been obtained. The effects of other parameters are also discussed on the stability of the system. Some results as the particular cases of the present study have also been obtained. Also the results corresponding to the Brinkman model and Darcy model have been compared.  相似文献   

15.
The route to chaos for moderate Prandtl number gravity driven convection in porous media is analysed by using Adomian's decomposition method which provides an accurate analytical solution in terms of infinite power series. The practical need to evaluate numerical values from the infinite power series, the consequent series truncation, and the practical procedure to accomplish this task, transform the otherwise analytical results into a computational solution achieved up to a desired but finite accuracy. The solution shows a transition to chaos via a period doubling sequence of bifurcations at a Rayleigh number value far beyond the critical value associated with the loss of stability of the convection steady solution. This result is extremely distinct from the sequence of events leading to chaos in low Prandtl number convection in porous media, where a sudden transition from steady convection to chaos associated with an homoclinic explosion occurs in the neighbourhood of the critical Rayleigh number (unless mentioned otherwise by 'the critical Rayleigh number' we mean the value associated with the loss of stability of the convection steady solution). In the present case of moderate Prandtl number convection the homoclinic explosion leads to a transition from steady convection to a period-2 periodic solution in the neighbourhood of the critical Rayleigh number. This occurs at a slightly sub-critical value of Rayleigh number via a transition associated with a period-1 limit cycle which seem to belong to the sub-critical Hopf bifurcation around the point where the convection steady solution looses its stability. The different regimes are analysed and periodic windows within the chaotic regime are identified. The significance of including a time derivative term in Darcy's equation when wave phenomena are being investigated becomes evident from the results.  相似文献   

16.
The onset of double-diffusive convection in a horizontal fluid layer is studied. The density is assumed to depend quadratically on the temperature and linearly on the solute concentration. Under the Boussinesq approximation, the linear stability of the conduction state is investigated with respect to the oscillatory and steady convection modes. For steady onset, the critical thermal Rayleigh number is found to be a double-valued function of the solutal Rayleigh number as long as the relative maximum of the density profile exists within the fluid layer. Driving mechanisms of the steady convections are discussed.  相似文献   

17.
A stability analysis is carried out to investigate the onset of thermosolutal convection in a horizontal porous layer when the solid and fluid phases are not in a local thermal equilibrium, and the solubility of the dissolved component depends on temperature. To study how the reaction and thermal non-equilibrium affect the double-diffusive convection, the effects of scaled inter-phase heat transfer coefficient H and dimensionless reaction rate k on thermosolutal convection are discussed . The critical Rayleigh number and the corresponding wave number for the stability and overstability convections are obtained. Specially, asymptotic analysis for both small and large values of H and k is presented, and the corresponding asymptotic solutions are compared with numerical results. At last, a nonlinear stability analysis is presented to study how H and k affect the Nusselt number.  相似文献   

18.
近二十年来,微重力流体开展了半浮区液桥热毛细对流的不稳定性与转捩的研究.文中给出了热毛细振荡对流发生的临界参数,分析了液桥几何位形(尺度比,体积比)、物理参数及传热参数对临界Maxangoni的影响.报导了有关的地面模拟实验,微重力实验以及本问题的线性稳定性分析、能量分析和数值模拟结果,并介绍了定常轴对称热毛细对流通过非定常振荡热毛细对流到湍流的转捩过程和三种热毛细振荡对流的产生机理.  相似文献   

19.
The onset of double diffusive convection in a two component couple stress fluid layer with Soret and Dufour effects has been studied using both linear and non-linear stability analysis. The linear theory depends on normal mode technique and non-linear analysis depends on a minimal representation of double Fourier series. The effect of couple stress parameter, the Soret and Dufour parameters, and the Prandtl number on the stationary and oscillatory convection are presented graphically. The Dufour parameter enhances the stability of the couple stress fluid system in case of both stationary and oscillatory mode. The effect of positive Soret parameter is to destabilize the system in case of stationary mode while it stabilizes the system in case of oscillatory mode. The negative Soret parameter enhances the stability in both stationary and oscillatory mode. The couple stress parameter enhances the stability of the system in both stationary and oscillatory modes. The Dufour parameter increases the heat transfer while the couple stress parameter has reverse effect. The Soret parameter has negligible influence on heat transfer. Both Dufour and Soret parameters increases the mass transfer while the couple stress parameter has dual effect depending on the value of the Rayleigh number.  相似文献   

20.
The stability and onset of convection in a rotating fluid saturated porous layer subject to a centrifugal body force and placed at an offset distance from the center of rotation is investigated analytically. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the parameter representing the dimensionless offset distance from the center of rotation. At the limit of an infinite distance from the center of rotation the results are identical to the convection resulting from heating a porous layer from below subject to the gravitational body force. At the other limit, when the parameter controlling the offset distance approaches zero, the results converge to previously found solutions for the convection in a porous layer adjacent to the axis of rotation. The results provide the stability map for all positive values of the parameter controlling the offset distance from the center of rotation, hence bridging the gap between the two extreme limit cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号