首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
制备了一种能固载目标蛋白质, 却没有非特异性蛋白质吸附的高分子涂层. 该涂层是可生物降解的油水两亲性的三嵌段聚合物, 即生物素偶联的聚乙二醇-聚丙交酯-聚赖氨酸共聚物. 将高分子溶解于N,N-二甲基甲酰胺中, 并涂布在预先包被了聚赖氨酸的脱脂玻片基质上, 形成高分子涂层, 在其表面包被一层由明胶和聚N-乙烯基吡咯烷酮组成的封闭剂. 使用酶标免疫分析法, 对高分子涂层表面的生物活性进行评价. 依次将辣根过氧化物酶标记的链亲和素和生物素偶联的小鼠球蛋白抗原和碱性磷酸酯酶标记的马抗小鼠抗体固载在高分子涂层表面上, 通过标记酶与底物作用生色. 分析结果表明, 经过封闭以后, 生物素化的高分子涂层表面能够排斥非特异性的蛋白质; 同时特异性蛋白质之间(如生物素和链亲和素之间、抗原和抗体之间)的相互作用依然保留, 并且固定在表面的蛋白质依然保留其生物活性. 因此生物素化的聚乙二醇-聚丙交酯-聚赖氨酸三嵌段高分子可以作为生物活性材料, 用于蛋白质固载和蛋白质分离及分析.  相似文献   

2.
以硅胶为载体的交联壳聚糖作为亲和层析填料基质的研究   总被引:9,自引:0,他引:9  
邬建敏  陈正贤  阮东梁 《分析化学》2002,30(9):1063-1066
采用硅胶为载体的交联壳聚糖(CTS-SiO2)作为亲和层析填料基质,对其卵清蛋白的偶联能力,以及亲和纯化小鼠抗卵清蛋白抗体效果等进行了研究。结果显示卵清蛋白能方便地用二醛偶联于CTS-SiO2基质,该新型亲和层析填料稳定性高,选择性好,非特异性吸附小,每克交联壳聚糖上可偶联卵清蛋白54.25mg,用该填料可有效地亲和吸附小鼠抗卵清蛋白抗体,并可用碱性缓冲液将该抗体洗脱,初步显示出较好的分离纯化效果。  相似文献   

3.
以5,5'-二硫代双(琥珀酰亚氨基-2-硝基苯甲酸)(DSNB)分子作为偶联剂将蛋白质结合在金纳米粒子表面,既保持了蛋白质的生物活性,同时DSNB分子又具有较高的表面增强拉曼散射(SERS)活性,可作为蛋白质定量分析的探针分子.选用生物素与亲和素的特异性识别以及抗原抗体的免疫识别2个生物反应体系,将SERS纳米探针固定在蛋白质检测芯片上.以硅片为蛋白质检测载体,利用硅片在520 cm-1处的拉曼特征峰为内标,对人Ig G抗体进行定量分析.结果表明,该探针对人Ig G抗体检测的最低浓度可以达到5 pg/m L.  相似文献   

4.
抗体经常被固定在某一固相载体表面用于免疫检测分析,但通常得到的是随机固定化的抗体,因而会影响抗体的活性。本文开发了一种新型的亲和载体用于抗体的定向固定化。即将与抗体IgG的Fc片段具有亲和作用的肽配基偶联于pGMA纳米球上,制备亲和载体用于吸附抗体实现抗体的定向固定化。首先利用乳液聚合法制备了粒径为110nm的pGMA纳米球,再以EDMA为交联剂并且在纳米球表面氨基化,最后将与抗体IgG的Fc片段具有亲和作用的肽配基HWRGWV偶联于纳米球表面,制备得到肽配基纳米球亲和载体。然后,考察了亲和载体对猪IgG的吸附行为。进一步,利用等温滴定微量量热仪研究了该纳米球亲和载体与IgG之间的相互作用热力学。结果表明,肽配基亲和载体对IgG的特异性吸附作用明显高于肽配基修饰前的载体。亲和载体与IgG的亲和作用主要贡献是疏水相互作用;而IgG与氨化纳米球载体的吸附作用则主要通过静电作用和氢键作用。所制得的纳米球亲和载体可用于进一步开发高效率、高灵敏度的临床免疫检测方法。  相似文献   

5.
将Nafion 膜固定在金电极(Au)表面, 通过静电吸附和共价键合作用将硫堇(Thi)和纳米金颗粒(nano-Au)层层自组装到Nafion膜修饰的金电极表面. 再通过形成的纳米金单层吸附癌胚抗体(anti-CEA), 最后用辣根过氧化物酶(HRP)代替牛血清白蛋白(BSA)封闭电极上的非特异性吸附位点, 并同时起到放大响应电流信号的作用, 从而制得高灵敏、高稳定电流型酶-癌胚抗原(CEA)免疫传感器. 通过循环伏安和交流阻抗考察了电极表面的电化学特性, 并对该免疫传感器的性能进行了详细的研究. 该传感器对CEA检测的线性范围为2.5~80.0 ng/mL, 检测限为0.90 ng/mL.  相似文献   

6.
用于识别不同细胞蛋白质组的噬菌体抗体芯片   总被引:1,自引:1,他引:1  
洪龙  廖玮  魏芳  赵新生  朱圣庚 《物理化学学报》2004,20(10):1182-1185
将4个鼠源噬菌体抗体克隆和1个人源噬菌体抗体克隆偶联到羧基终止的硅片表面,制成分析型模型芯片.挑选健康人体淋巴细胞为正常细胞的代表, HeLa细胞为肿瘤细胞的代表,提取细胞的全部蛋白质并用荧光染料Cy3标记,与制成的分析芯片反应,得到了不同的结合图谱.实验结果表明,以噬菌体抗体为分子感受器的分析芯片可用于识别不同细胞的蛋白质组.  相似文献   

7.
合成了磁性聚乙烯醇和磁性聚甲基丙烯酸甲酯微球,并以它们为基质,用环氧氯丙烷、羰基二咪唑或溴化氰活化后,分别键合氨基乙酸、6-氨基己酸、乙二胺或己二胺为间隔臂,用1-乙基-3-(3-二甲基氨丙基)碳二亚胺盐酸盐或羰基二咪唑为偶联试剂,分别偶联对氨基苯甲脒、L-精氨酸甲酯、胍基乙酸或胍基己酸配体,合成了17种磁性亲和吸附剂,并用于尿激酶粗品的纯化.与前文制备的8种磁性亲和吸附剂作对照,研究了基质、活化试剂、间隔臂分子、偶联试剂及配体等因素对尿激酶纯化效果的影响.这些磁性亲和吸附剂在尿激酶的纯化中取得了较好的效果,大多数磁性亲和吸附剂的活性回收率在40%~70%之间,纯化倍数为15~40,吸附容量为0.08~0.2mg/mL.  相似文献   

8.
蛋白质传感器作为一种分析蛋白质与其他分子之间作用力的有效手段已经越来越显示出其优点, 但是蛋白质在基底表面的变性问题对于研究者来说仍然是一个挑战. 作者介绍了一种具有高灵敏度的蛋白质传感器, 即利用DNA引导固定(DDI)方法, 将DNA- 蛋白质复合物通过DNA双链特异性杂交固定在硅基底表面, 从而有效保持了蛋白质的活性, 并且引入荧光共振能量传递(FRET)技术以及电势扫描发卡去杂交(SPHD)技术降低非特异性吸附带来的荧光信号. 这种蛋白质传感器在蛋白质识别以及DNA杂交方面具有显著区分不同体系荧光信号的能力.  相似文献   

9.
采用模板法制备的单分散磁性硅胶微球,经过表面修饰偶联上亚氨基二乙酸(IDA),与过渡金属离子Cu2 螯合,制成一种新型的磁性固定化金属亲和纯化载体。用牛血清白蛋白(BSA)作为模型进行磁性固定化金属亲和吸附蛋白的研究,结果表明,BSA在磁性亲和载体上的吸附可用Langmuir吸附方程描述,对BSA的饱和吸附量为90mg/g。将磁性亲和载体用于带有组氨酸标签的镇痛抗肿瘤多肽(analgesic-antitumorpeptide,AGAP)纯化,在未经过滤的细胞裂解液中可以将AGAP一步纯化,非特异性吸附低,操作简便,完全适用于含有组氨酸标记的重组多肽或蛋白的分离纯化。  相似文献   

10.
刘冲  程昉  何炜 《高分子学报》2023,(9):1320-1332
报道了一种基于乙烯基砜(VS)表面的双向密度梯度构建的新策略,该策略能够在生物配体梯度表面上直接生长惰性聚合物刷而不需要额外的表面改性.采用该策略制备明确的配体密度芯片可用于在复杂生物流体中对应抗体的高特异性检测.选择荧光素作为小分子活性配体模型以发展和验证该策略.采用该策略制备荧光素和两性离子聚合物刷组成的双向密度梯度样品,并通过荧光素抗体(anti-FITC)在样品表面的皮尔森系数优选出聚甲基丙烯酸磺基甜菜碱(PSBMA)作为惰性配体.该双向密度梯度样品对anti-FITC和牛血清白蛋白(BSA)分别具有良好的特异性和抗非特异性结合能力.通过该策略制备了具有明确anti-FITC吸附性能的荧光素芯片,发现高密度荧光素芯片在BSA和50%胎牛血清(FBS)溶液中对antiFITC具有高的特异性和敏感性.此外,选择抗人绒毛膜促性腺激素抗体(anti-HCG)和抗β2-微球蛋白抗体(anti-BMG)作为生物大分子模型验证该策略的通用性.因此,该策略不仅可以作为双向密度梯度制备的通用方法,而且可为生物检测芯片的制备提供理论指导.  相似文献   

11.
Coatings based on dendritic polyglycerol (dPG) were investigated for their use to control nonspecific protein adsorption in an assay targeted to analyze concentrations of a specific protein. We demonstrate that coating of the sample vial with dPG can significantly increase the recovery of an antibody after incubation. First, we determine the concentration dependent loss of an antibody due to nonspecific adsorption to glass via quartz crystal microbalance (QCM). Complementary to the QCM measurements, we applied the same antibody as analyte in an surface plasmon resonance (SPR) assay to determine the loss of analyte due to nonspecific adsorption to the sample vial. For this purpose, we used two different coatings based on dPG. For the first coating, which served as a matrix for the SPR sensor, carboxyl groups were incorporated into dPG as well as a dithiolane moiety enabling covalent immobilization to the gold sensor surface. This SPR-matrix exhibited excellent protein resistant properties and allowed the immobilization of amyloid peptides via amide bond formation. The second coating which was intended to prevent nonspecific adsorption to glass vials comprised a silyl moiety that allowed covalent grafting to glass. For demonstrating the impact of the vial coating on the accuracy of an SPR assay, we immobilized amyloid beta (Aβ) 1-40 and used an anti-Aβ 1-40 antibody as analyte. Alternate injection of analyte into the flow cell of the SPR device from uncoated and coated vials, respectively gave us the relative signal loss (1 − RUuncoated/RUcoated) caused by the nonspecific adsorption. We found that the relative signal loss increases with decreasing analyte concentration. The SPR data correlate well with concentration dependent non-specific adsorption experiments of the analyte to glass surfaces performed with QCM. Our measurements show that rendering both the sample vial and the sensor surface is crucial for accurate results in protein assays.  相似文献   

12.
An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH / CH(3)-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG / hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.  相似文献   

13.
Protein microarrays are promising tools that can potentially enable high throughput proteomic screening in areas such as disease diagnosis and drug discovery. A critical aspect in the development of protein microarrays is the optimization of the array's surface chemistry to achieve the high sensitivity required for detection of proteins in cell lysate and other complex biological mixtures. In the present study, a high-density antibody array with minimal nonspecific cellular protein adsorption was prepared using a glass surface coated with a poly(propyleneimine) dendrimer terminated with carboxyl group (PAMAM-COOH). The carboxyl-terminated dendrimer-modified surface has almost similar nonspecific cellular protein adsorption when compared to an inert PEG-modified surface. In addition, the multiple functional sites available for reaction on the dendrimer surface facilitated high-density immobilization of antibodies and efficient capture of bioanalytes. Various molecules were tested for their ability to block or deactivate the reactive carboxyl surface after antibody immobilization to further reduce the nonspecific binding. A short oligoethylene glycol (NH2-d4-PEG-COOH), was found to significantly improve the signal-to-noise ratio of the assay, resulting in higher sensitivity. The properties and functional qualities of the various surfaces were characterized by contact angle and AFM measurements. Nonspecific protein adsorption and protein immobilization as a function of dendrimer generations and sensitivity of antigen capturing from a buffer (1 pM) as well as from the complex cell lysate (10 pM) system were examined. Our detailed experimental studies demonstrated a facile method of preparing surfaces with high protein loading and low nonspecific protein binding for the development of high sensitivity protein microarrays.  相似文献   

14.
Antibody immobilization strategies (random, covalent, orientated and combinations of each) were examined to determine their performance in a surface plasmon resonance-based immunoassay using human fetuin A (HFA) as the model antigen system. The random antibody immobilization strategy selected was based on passive adsorption of anti-HFA antibody on 3-aminopropyltriethoxysilane (APTES)-functionalized gold (Au) chips. The covalent strategy employed covalent crosslinking of anti-HFA antibody on APTES-functionalized chips using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (SNHS). The orientation strategy used passive adsorption of protein A (PrA) on Au chips, with subsequent binding of the anti-HFA antibody in an orientated fashion via its fragment crystallisable (Fc) region. In the covalent-orientated strategy, PrA was first bound covalently, to the surface, which in turn, then binds the anti-HFA antibody in an orientated manner. Finally, in the most widely used strategy, covalent binding of anti-HFA antibody to carboxymethyldextran (CM5-dextran) was employed. This immobilization strategy gave the highest anti-HFA antibody immobilization density, whereas the highest HFA response was obtained with the covalent-orientated immobilization strategy. Therefore, the covalent-orientated strategy was the best for SPR-based HFA immunoassay and can detect 0.6-20.0 ng/mL of HFA in less than 10 min.  相似文献   

15.
Maghemite nanoparticles (MNPs) were synthesized by chemical coprecipitation and coated with meso-2,3-dimercaptosuccinic acid (HOOC-CH(SH)-CH(SH)-COOH or DMSA). The morphology and properties of the nanoparticles were characterized by TEM, XRD, Zeta Potential Analyzer and VSM. Subsequentially, the anti-human cardiac troponin I (cTnI) immunomagnetic nanoparticles (IMNPs) were prepared by grafting anti-human cTnI antibodies on the surface of DMSA-coated MNPs using the linker of EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride). The conjugation amount of the antibodies and the activity of IMNPs was evaluated by enzyme linked immunosorbent assay (ELISA) and Western blotting. The results show that the physical and chemical adsorption occurred at the same time, but the former was unstable and apt to desorb, and the maximum conjugation amount of antibody was about 96 μg on the 0.1 mg MNPs by covalent bond. The stability was also investigated, and after 300 days the antibodies on the IMNPs remained the biological activity.  相似文献   

16.
We present results of the first systematic study on in situ sequence-dependent kinetics for short single-strand oligonucleotide surface immobilization. By measuring film coverage for both thiolated and nonthiolated homo-oligomers as a function of adsorption time, we determine the relative contribution of specific thiol-surface and nonspecific DNA-surface interactions to the overall mechanism of DNA-thiol attachment to gold. We find that sequence-dependent nonspecific surface interactions play a significant role in DNA-thiol immobilization, influencing not only the kinetics but also the extent of oligomer adsorption. For example, sequences that initially form strong, rapid nonspecific contacts with the surface hinder long-time thiol adsorption (i.e., poly(dA)-thiol). In contrast, sequences with nucleotides that initially bind slowly and weakly to the surface (i.e., poly(dT)-thiol) do not obstruct further thiol adsorption, resulting in higher film coverage and Langmuir immobilization kinetics. This view of the DNA-thiol immobilization mechanism is further supported by sequence-dependent rinsing losses observed for thiolated DNA strands but not for analogous nonthiolated strands. Nonthiolated strands contact the surface strongly in a more horizontal orientation, whereas thiolated strands attain a more upright orientation that allows vertical DNA-DNA base-stacking. The results clearly illustrate the importance and interplay of competitive specific and nonspecific forces in forming DNA-thiol films. The specific coverage attained and the time dependence of the adsorption process depend on the prevailing sequence composition.  相似文献   

17.
A systematic evaluation of the effects of antibody immobilization strategy on the binding efficiency and selectivity (e.g., ability to distinguish between specific and nonspecific interactions) of immunosurfaces prepared with F(ab') antibody fragments of rabbit Immunoglobulin G (IgG) is described. F(ab') was attached to gold surfaces either (1) directly via the formation of a gold-thiolate bond or (2) indirectly through a series of a bifunctional linkers containing an alkane chain or ethylene glycol spacer. Immobilization of F(ab') via the sulfhydryl reactive group located opposite the antigen binding site ensured optimum orientation of the antigen binding site. X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) were used to confirm surface modification with the bifunctional linkers and antibody immobilization, respectively. Binding efficiency assays performed with SPR indicated that increasing the length of the linker increased the antigen binding efficiency. Atomic force microscopy (AFM) adhesion force measurements indicated that AFM probes functionalized with directly immobilized F(ab') more effectively discriminated between specific and nonspecific surface-bound proteins than probes modified indirectly via linker-immobilized F(ab'). In addition, a greater number of antibody-antigen binding events were observed with directly immobilized F(ab')-functionalized probes.  相似文献   

18.
The conserved nucleotide binding site (NBS), found on the Fab variable domain of all antibody isotypes, remains a not-so-widely known and unutilized site. Here, we describe a UV photo-cross-linking method (UV-NBS) that utilizes the NBS for oriented immobilization of antibodies onto surfaces, such that the antigen binding activity remains unaffected. Indole-3-butyric acid (IBA) has an affinity for the NBS with a K(d) ranging from 1 to 8 μM for different antibody isotypes and can be covalently photo-cross-linked to the antibody at the NBS upon exposure to UV light. Using the UV-NBS method, antibody was successfully immobilized on synthetic surfaces displaying IBA via UV photo-cross-linking at the NBS. An optimal UV exposure of 2 J/cm(2) yielded significant antibody immobilization on the surface with maximal relative antibody activity per immobilized antibody without any detectable damage to antigen binding activity. Comparison of the UV-NBS method with two other commonly used methods, ε-NH(3)(+) conjugation and physical adsorption, demonstrated that the UV-NBS method yields surfaces with significantly enhanced antigen detection efficiency, higher relative antibody activity, and improved antigen detection sensitivity. Taken together, the UV-NBS method provides a practical, site-specific surface immobilization method, with significant implications in the development of a large array of platforms with diverse sensor and diagnostic applications.  相似文献   

19.
Aminosilane-treated molecular layers on glass surfaces are frequently used as functional platforms for biosensor preparation. All the amino groups present on the surface are not available in reactive forms, because surface amino groups interact with remaining unreacted surface silanol groups. Such nonspecific interactions might reduce the efficiency of chemical immobilization of biomolecules such as DNA, enzymes, antibodies, etc., in biosensor fabrication. To improve immobilization efficiency we have used additional surface silanization with alkylsilane (capping) to convert the remaining silanol groups into Si–O–Si linkages, thereby liberating the amino groups from nonspecific interaction with the silanol groups. We prepared different types of capped amine surface and evaluated the effect of capping on immobilization efficiency by investigating the fluorescence intensity of Cy3-NHS (N-hydroxysuccinimide) dye that reacted with amino groups. The results indicate that most of the capped amine surfaces resulted in enhanced efficiency of immobilization of Cy3-NHS compared with the untreated control amine surface. We found a trend that trialkoxysilanes had greater capping effects on immobilization efficiency than monoalkoxysilanes. It was also found that the aliphatic chain of alkylsilane, which does not participate in the capping of the silanol, had an important function in enhancing immobilization efficiency. These results would be useful for preparation of an amine-modified surface platform, with enhanced immobilization efficiency, which is essential for developing many kinds of biosensors on a silica matrix. Enhancement of amine funtionality by capping with alkylsilane  相似文献   

20.
The development of bioelectronic enzyme applications requires the immobilization of active proteins onto solid or colloidal substrates such as gold. Coverage of the gold surface with alkanethiol self-assembled monolayers (SAMs) reduces nonspecific adsorption of proteins and also allows the incorporation onto the surface of ligands with affinity for complementary binding sites on native proteins. We present in this work a strategy for the covalent immobilization of glycosylated proteins previously adsorbed through weak, reversible interactions, on tailored SAMs. Boronic acids, which form cyclic esters with saccharides, are incorporated into SAMs to weakly adsorb the glycoprotein onto the electrode surface through their carbohydrate moiety. To prevent protein release from the electrode surface, we combine the affinity motif of boronates with the reactivity of epoxy groups to covalently link the protein to heterofunctional boronate-epoxy SAMs. The principle underlying our strategy is the increased immobilization rate achieved by the weak interaction-induced proximity effect between slow reacting oxyrane groups in the SAM and nucleophilic residues from adsorbed proteins, which allows the formation of very stable covalent bonds. This approach is exemplified by the use of phenylboronates-oxyrane mixed monolayers as a reactive support and redox-enzyme horseradish peroxidase as glycoprotein for the preparation of peroxidase electrodes. Quartz crystal microbalance, atomic force microscopy, and electrochemical measurements are used to characterize these enzymatic electrodes. These epoxy-boronate functional monolayers are versatile, stable interfaces, ready to incorporate glycoproteins by incubation under mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号