首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以改进的对流自组装方法制备层数可控的胶体光子晶体, 并通过各向同性氧等离子体(O2 Plasma)刻蚀构造出梯度结构, 进一步通过金(Au)及无定形硅(Si)的可控沉积调节梯度结构胶体光子晶体的光子禁带, 并将该梯度结构用于罗丹明B的荧光发射增强.  相似文献   

2.
We have studied the assembly of 3-D colloidal crystals from binary mixtures of colloidal microspheres and highly charged nanoparticles on flat and epitaxially patterned substrates created by focused ion beam milling. The microspheres were settled onto these substrates from dilute binary mixtures. Laser scanning confocal microscopy was used to directly observe microsphere structural evolution during sedimentation, nanoparticle gelation, and subsequent drying. After microsphere settling, the nanoparticle solution surrounding the colloidal crystal was gelled in situ by introducing ammonia vapor, which increased the pH and enabled drying with minimal microsphere rearrangement. By infilling the dried colloidal crystals with an index-matched fluorescent dye solution, we generated full 3-D reconstructions of their structure including defects as a function of initial suspension composition and pitch of the patterned features. Through proper control over these important parameters, 3-D colloidal crystals were created with low defect densities suitable for use as templates for photonic crystals and photonic band gap materials.  相似文献   

3.
Self-assembled colloidal crystals have attracted major attention because of their potential as low-cost three-dimensional (3D) photonic crystals. Although a high degree of perfection is crucial for the properties of these materials, little is known about their exact structure and internal defects. In this study, we use tomographic scanning transmission X-ray microscopy (STXM) to access the internal structure of self-assembled colloidal photonic crystals with high spatial resolution in three dimensions for the first time. The positions of individual particles of 236 nm in diameter are identified in three dimensions, and the local crystal structure is revealed. Through image analysis, structural defects, such as vacancies and stacking faults, are identified. Tomographic STXM is shown to be an attractive and complementary imaging tool for photonic materials and other strongly absorbing or scattering materials that cannot be characterized by either transmission or scanning electron microscopy or optical nanoscopy.  相似文献   

4.
采用光固化技术, 以丙烯酰胺单体与亚甲基双丙烯酰胺交联剂在紫外光的照射下发生光聚合反应, 嵌入聚苯乙烯胶体晶体, 实现了胶体晶体的固定化. 结合反射光谱和Kossel衍射技术研究对照了固定化前后胶体晶体的变化, 实验结果表明, 通过这种水凝胶固定化的胶体晶体保存了未固定前悬浮液中胶体晶体的结构. 但固定化后的胶体晶体的晶面间距和晶体的尺寸都略微减小. 通过对固定化后的水凝胶长时间的反射光谱观测, 发现固定化后胶体晶体在Milli-Q水中起初会发生溶胀, 经过2-5天溶胀-消溶胀过程达到平衡, 平衡后的水凝胶胶体晶体十分稳定, 可以长时间保持胶体晶体的结构. 因此, 胶体晶体固定化不但极大地提高了悬浮液中胶体晶体的抗剪切能力, 还克服了悬浮液中胶体晶体对离子、外界干扰的敏感性, 扩大了胶体晶体的实际应用价值.  相似文献   

5.
Nonspherical colloids and their ordered arrays may be more attractive in applications such as photonic crystals than their spherical counterparts because of their lower symmetries, although such structures are difficult to achieve. In this letter, we describe the fabrication and characterization of colloidal crystals constructed from nonspherical polyhedrons. We fabricated such nonspherical colloidal crystals by pressing spherical polymer colloidal crystal chips at a temperature slightly lower than the glass-transition temperature (T(g)) of these polymer colloids. During this process, the polymer microspheres were distinctively transformed into polyhedrons according to their crystal structures, whereas the long-range order of the 3D lattice was essentially preserved. Because a working temperature lower than T(g) effectively prevented the colloidal crystals from fusing into films, the spherical colloidal crystals were transformed greatly under pressure, which lead to obvious change in the optical properties of colloidal crystals. Besides their special symmetry and optical properties, these nonspherical colloidal crystals can be used as templates for 2D or 3D structures of special symmetry, such as 2D nano-networks. We anticipate that this fabrication technique for nonspherical colloidal crystals can also be extended to nonspherical porous materials.  相似文献   

6.
Monodisperse aqueous emulsion droplets encapsulating colloidal particles were produced in the oil phase, and controlled microwave irradiation of the aqueous drop phase created spherical colloidal crystals by so-called evaporation-induced self-organization of the colloidal particles. Unlike usual colloidal crystals, colloidal crystals in spherical symmetry (or photonic balls) possessed photonic band gaps for the normal incident light independent of the position all over the spherical surface. While the consolidation of colloidal particles in emulsion droplets in an oven took several hours, the present microwave-assisted evaporation could reduce the time for complete evaporation to a few tens of minutes. Under the microwave irradiation, the aqueous phase in emulsions was superheated selectively and the evaporation rate of water could be controlled easily by adjusting the microwave intensity. The result showed that the packing quality of colloidal crystals obtained by the microwave-assisted self-organization was good enough to show photonic band gap characteristics. The reflectance of our photonic balls responded precisely to any change in physical properties including the size of colloidal particles, refractive index mismatch, and angle of the incident beam. In particular, for polymeric particles, the photonic band gap could be tuned by the intensity of microwave irradiation, and the reflection color was red-shifted with stronger microwave irradiation. Finally, for better photonic band gap properties, inverted photonic balls were prepared by using the spherical colloidal crystals as sacrificial templates.  相似文献   

7.
关英  张拥军 《高分子学报》2017,(11):1739-1752
Poly(N-isopropylacrylamide)(PNIPAM)微凝胶粒子是一种软的胶体粒子.和单分散的SiO_2、PS、PMMA等硬的胶体粒子一样,单分散的PNIPAM微凝胶粒子也可以自组装成为高度有序的胶体晶体.微凝胶粒子软物质的特性及其对外部刺激的响应性赋予其不同于硬球的组装行为.微凝胶胶体晶体的高度有序结构及其刺激响应性使其在诸多领域有重要用途.本文分别介绍了三维及二维微凝胶胶体晶体组装的研究进展,并对已开发的基于微凝胶胶体晶体的应用进行了总结.  相似文献   

8.
Three-dimensional photonic crystals made of close-packed polymethylmethacrylate (PMMA) spheres or air spheres in silica, titania and ceria matrices have been fabricated and characterized using SEM, XRD, Raman spectroscopy and UV–Vis transmittance measurements. The PMMA colloidal crystals (opals) were grown by self-assembly from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centred cubic (fcc) array, and UV–Vis measurements show that the colloidal crystals possess pseudo photonic band gaps in the visible and near-IR regions. Inverse opals were prepared by depositing silica (SiO2), titania (TiO2) or ceria (CeO2) in the voids of the PMMA colloidal crystals using sol-gel procedures, then calcining the resulting structure at 550 °C to remove the polymer template. The resulting macroporous materials showed fcc ordering of air spheres separated by thin frameworks of amorphous silica, nanocrystalline titania or nanocrystalline ceria particles, respectively. Optical measurements confirmed the photonic nature of the inverse opal arrays. UV–Vis data collected for the opals and inverse opals obeyed a modified Bragg’s law expression that considers both diffraction and refraction of light by the photonic crystal architectures. The versatility of the colloidal crystal template approach for the fabrication of macroporous oxide structures is demonstrated.  相似文献   

9.
聚苯乙烯光子晶体的制备及其在传感中的应用   总被引:11,自引:3,他引:8  
谈勇  杨可靖  曹跃霞  周蓉  陈明  钱卫平 《化学学报》2004,62(20):2089-2092,F010
以基于毛细作用的垂直沉积法将单分散的二氧化硅胶体微球自组装成光子晶体.在二氧化硅光子晶体的多孔结构里填充聚苯乙烯甲苯溶液,经甲苯挥发,通过氢氟酸处理去除二氧化硅模板,制备出精美的聚苯乙烯光子晶体.研究表明:保留了模板有序多孔结构的聚苯乙烯能被用来作为敏感膜,这使得其在基于折射率变化的传感应用中具有潜在的价值.  相似文献   

10.
强制沉积法是一种利用自组装原理快速沉积胶体晶体有序阵列的模板方法. 我们利用微机械刻划法加工金属Al薄膜, Al膜厚控制微粒粒径和聚醚砜膜厚控制层数, 成功地制备了用于强制沉积光子晶体的微池装置. 为了检验该微池装置的有效性, 我们分别测试了不同粒径(224, 245和283 nm)单分散聚苯乙烯微球的沉积效果, 并且对其中一种微球(283 nm)进行了不同温度的烘干处理, 检验了烘干温度对该样品表面形貌和光子带隙中心波长的影响. 实验结果表明, 该光子晶体呈面心立方结构, 内部晶格完整, 缺陷较少, 带隙中心波长的实验值与计算值符合得较好. 此外, 烘干处理可以使构成光子晶体的微球发生微观变化, 并导致光子带隙中心波长的蓝移.  相似文献   

11.
With planar photolithography and self-assembly techniques, multilayer colloidal crystals with a woodpile structure were fabricated. They represent a new kind of photonic crystals, that is, three-dimensional (3D) photonic crystals with a dual periodicity; one comes from the face-centered cubic (fcc) structure within the colloidal crystal strips and the other one results from the periodic arrangement of the colloidal crystal strips.  相似文献   

12.
Close-packed colloidal crystals are promising precursors for novel materials, but only after appropriate methods are developed to fix their structure. A wide range of advanced materials has recently been synthesized by replicating the structure of colloidal crystals into durable solid matrices. Such materials with structured pores have promise as photonic crystals, catalysts, and membranes, and in a variety of other applications. This paper reviews the methods used in the formation of these materials and likely future trends in the field.  相似文献   

13.
Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.  相似文献   

14.
For the application of colloidal crystal films as "photonic band gap" materials, their domain size and thickness are significant. The substrate withdrawing speed, the colloidal suspension volume fraction, and the colloidal suspension temperature have been studied for the domain size and thickness controls of colloidal crystals in this study. Stable dispersions of monodispersed polystyrene spheres with a diameter of 245 nm were synthesized according to a general emulsion polymerization for colloidal crystal films. By experimental results and the theoretical relationship between the number of layers and other parameters, we could know that the water bridge between colloidal spheres (which is formed by capillary force) influences the number of colloidal crystal layers significantly.  相似文献   

15.
Reflectance spectroscopy is utilized to monitor structural changes during the self-assembly of a monodisperse colloidal system at the meniscus of a sessile drop on an inert substrate. Treating the ordered colloidal structure as a photonic crystal is equivalent to monitoring the changes in the photonic band gap (PBG) as the colloidal system self-assembles heterogeneously into a crystal through solvent evaporation in ambient conditions. Using a modified Bragg's law model of the photonic crystal, we can trace the structural evolution of the self-assembling colloidal system. After a certain induction period, a face-centered cubic (FCC) structure emerges, albeit with a lattice parameter larger than that of a true close-packed structure. This FCC structure is maintained while the lattice parameter shrinks continuously with further increase in the colloidal concentration due to drying. When the structure reaches a lattice parameter 1.09 times the size of that of a true close-packed structure, it undergoes an abrupt decrease in lattice spacing, apparently similar to those reported for lattice-distortive martensitic transformations. This abrupt final lattice shrinkage agrees well with the estimated Debye screening length of the electric double layer of charged colloids and could be the fundamental reason behind the cracking commonly seen in colloidal crystals.  相似文献   

16.
光子晶体(PhCs)是由单分散纳米粒子周期性排列形成的材料,具有光子禁带,频率落在光子禁带内的光被禁止传播,这个特性激起了研究者对其制备和应用的研究热情。然而,一般的光子晶体材料都具有角度有偏性质,限制了其在宽视角光学材料和设备上的应用。近几年有一系列围绕球形胶体光子晶体材料的研究成果问世,由于球形的对称性,球形胶体晶体的衍射峰不会随着光的入射角变化而发生变化,从而拓宽了胶体晶体的应用范围。随着微流控技术被用于制备液滴模板,球形胶体晶体的制备取得了巨大的进步。微流控技术不仅保证了液滴模板的单分散性,还增加了胶体晶体微球的结构与功能的多样性。胶体晶体微球这些特有的性质,可以很好地将光子晶体材料与编码、非标记检测、细胞培养以及载药等生物医学领域连接起来,为其应用提供了广阔的前景。本文总结了球形光子晶体的研究进展,包括球形光子晶体的设计、制备及其生物医学应用,最后,对球形光子晶体未来的发展方向作了展望。  相似文献   

17.
A three-dimensionally ordered array of close-packed colloidal spheres, a photonic crystal structure in which the refractive index of the medium interstitial lattice in a colloidal crystal spatially changes in the [111] crystallographic axis, is demonstrated. The colloidal photonic crystal structure with refractive index chirping was produced by infiltration of a monomer and organic dopants with a high refractive index into a silica opal, followed by interfacial gel polymerization. The resulting photonic crystal structure has a gradually varying stop band at each different (111) plane in the face-centered cubic (fcc) crystal structure at a normal incidence. This novel structure exhibited optical characteristics that have band-gap broadening by the superposition of stop bands at each plane of the crystal with different dielectric functions. Moreover, the refractive index perturbation in the [111] fcc opal also showed a defect state within a pseudo-photonic band gap. This new type of photonic crystal structure should be useful for the band-gap engineering of photonic-band-gap materials.  相似文献   

18.
韩国志  朱沈  吴生蓉  庞峰飞 《化学学报》2012,70(17):1827-1830
将胆甾相液晶填充进胶体晶体内部空隙, 通过胆甾相液晶与胶体晶体的耦合, 构建了一种新型可调制液晶光子晶体. 填充于胶体晶体内部的胆甾相液晶织构呈现典型的手性近晶相(S)特征. 由于胆甾相液晶具有特定的选择性反射, 当胶体晶体的带隙处于胆甾相液晶的反射波长范围之内, 则随着温度的改变, 胶体晶体的带隙与胆甾相液晶的带隙同时发生蓝移. 在一定温度条件下, 胆甾相液晶的带隙将与胶体晶体的带隙发生耦合, 实现了光子晶体带隙在单峰与双峰之间的可逆切换.  相似文献   

19.
胶体晶体研究进展   总被引:3,自引:0,他引:3  
重点阐述了有关胶体晶体的制备方法、以胶体晶体为模板制备的大孔材料,以及利用胶体晶体的三维有序结构、结构颜色等特性制备光子晶体、传感器等研究的进展。  相似文献   

20.
敏感性有序大孔水凝胶的模板合成与表征   总被引:1,自引:0,他引:1  
多孔材料由于孔道相互连通、比表面积大等特性而在吸附、离子交换,特别是在催化等领域中具有广泛应用价值.当孔道均匀且有序排列时,如果其间距与可见光波长相匹配时,则可对光产生调制作用,得到光子带隙材料,在未来的信息处理等方面将发挥重要作用.目前,人们以单分散的微粒有序排列的胶体晶为模板制备了各种有序大孔材料,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号