首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

3.
Micellization behaviors of polystyrene-graft-poly(ethylene oxide) (PS-graft-PEO) and its mixtures with PS homopolymer in ethanol were investigated by means of nuclear magnetic resonance (1H NMR) spectroscopy, transmission electron microscopy (TEM), and viscometry. It was revealed that PS-graft-PEO could self-assemble to form polymeric micelles with a core-shell structure in the shape of spherical. Micelle formation of PS-graft-PEO in ethanol was strongly dependent on the concentration, temperature, and the PS chain contents in PS-graft-PEO. The introduction of PS homopolymer not only decreases the critical micelle concentration, but also changes the morphology of the micelles.  相似文献   

4.
 The self-diffusion behavior of a triblock copolymer (PEO–b– PPO–b–PEO) in an aqueous solution of 20% (m/m) was investigated during a temperature-induced phase transition from liquid to gel state using pulsed field gradient NMR and static light scattering. The measured self-diffusivity shows a strong dependence on the observation time in the gel phase indicating the existence of diffusion barriers in the size range of about 0.6 μm. Additional static light-scattering measurements show a structure in the same size range of several hundred nanometers, which is far above molecular or micellar sizes and thus, has to be caused by larger clusters. The similarity in the space scales suggests that the restriction of molecular propagation is correlated with the grain boundaries between the domains of the poly-crystalline structure formed by the arranged micelles. Received: 28 October 1996 Accepted: 21 March 1997  相似文献   

5.
6.
Poly(ethylene oxide/polylactide/poly(ethylene oxide) (PEO/PL/PEO) triblock copolymers, in which each block is connected by an ester bond, were synthesized by a coupling reaction between PL and PEO. Hydroxyl‐terminated PLs with various molecular weights were synthesized and used as hard segments. Hydroxyl‐terminated PEOs were converted to the corresponding acid halides via their acid group and used as a soft segment. Triblock copolymers were identified by Fourier transform infrared spectroscopy, 1H NMR, and gel permeation chromatography. Differential scanning calorimetry (DSC) and X‐ray diffractometry of PEO/PL/PEO triblock copolymers suggested that PL and PEO blocks were phase‐separated and that the crystallization behavior of the PL block was markedly affected by the presence of the PEO block. PEO/PL/PEO triblock copolymers with PEO 0.75k had two exothermic peaks (by DSC), and both peaks were related to the crystallization of PL. According to thermogravimetric analysis, PEO/PL/PEO triblock copolymer showed a higher thermal stability than PL or PEO. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2545–2555, 2002  相似文献   

7.
聚L-丙氨酸-聚乙二醇嵌段共聚物的胶束化行为研究   总被引:5,自引:3,他引:5  
以氨基聚乙二醇单甲醚(MPEG-NH2)为大分子引发剂, 采用开环聚合方法合成了聚L-丙氨酸-聚乙二醇嵌段共聚物(PAME), 并对其结构进行了表征; 用圆二色谱(CD)研究了嵌段共聚物在水溶液中的二级结构, 用芘荧光探针技术研究了共聚物胶束的形成及其临界胶束浓度(CMC), 利用动态光散射(DLS)和透射电镜(TEM)研究了胶束的粒径分布和形态. 结果表明, 在水溶液中共聚物链以α-螺旋构象形式存在, 在一定条件下嵌段共聚物能够形成球形的稳定胶束, PAME-1形成胶束的CMC为1.99×10-5 mol/L, CMC值受共聚物中聚L-丙氨酸(PLA)链段含量的影响.  相似文献   

8.
9.
 Poly(ethylene oxide) macromonomers carrying methoxy group on the one (α-) end and methacryloyloxyhexyl or methacryloyloxydecyl group on the other (ω-) end were prepared, homopolymerized in water, and dispersion-copolymer-ized with styrene or methyl methacrylate in a methanol–water mixture. They were found to polymerize more rapidly and to produce stable polystyrene dispersions more effectively, as compared to the corresponding macromonomers carrying either α-methoxy and or α-dodecyloxy and ω-methacryloyloxy end groups. Thus, the amphiphilic constitution of the macromonomers such that favors the polymerizing methacrylate end groups to locally concentrate into the micelle core or to the particle surface while the poly(ethylene oxide) chains extending to the medium appears to be most important in enhancing their polymerizability and effectiveness as reactive steric stabilizers. On the other hand, stable poly(methyl methacry-late) particles with a number of craters or pleats on the surface were produced with a PEO macromono-mer with α-methoxy and ω-methacryl-oyloxy end groups. Received: 4 September 1996 Accepted: 18 October 1996  相似文献   

10.
 The morphological phase diagram of poly(styrene-block-n-butyl methacrylate), P(S-b-n-BMA), has been investigated in detail using thermal analysis, microscopy, rheology and scattering techniques. The system shows an upper critical order transition as well as a lower critical order transition (LCOT). For the first time, morphologies of the ordered system at higher temperatures (LCOT) as well as of a block copolymer system frozen-in during the phase separation process are reported. The Flory–Huggins interaction parameter, χ depends not only on temperature, but also on the composition and the molecular weight of the block copolymers, resulting in an asymmetrical phase diagram. Furthermore, the deuteration of the PS block seems to increase the χ parameter of the P[(d 8)S-b-n-BMA] system, reflecting the influence of small changes in architecture on phase behavior. The phase behavior and morphology of PS-b-PBMA are summarized in a phase diagram which is, however, quite complex and therefore needs further discussion. The equilibrium morphologies displayed are influenced by the temperature-dependent-conformation term as well as by the composition term. Received: 7 December 1999/Accepted: 28 April 2000  相似文献   

11.
Anionic polymerization high vacuum techniques were employed for the synthesis of a diblock (PS-b-PtBuMA) and two triblock (PS-b-PtBuMA-b-PS) copolymers of polystyrene (PS) and poly(t-butyl methacrylate) (PtBuMA) bearing similar low molecular weight PS end-block(s). Dilute solution viscometry, as well as static and dynamic light scattering, were employed to assess whether the short PS end-blocks were able to promote association in t-amyl alcohol, a selective solvent for PtBuMA. The effect of macromolecular architecture on the association behavior of the copolymers was also examined.  相似文献   

12.
This paper reports the studies on micelle formation of new biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer with various PHB and PEO block lengths in aqueous solution. Transmission electron microscopy showed that the micelles took an approximately spherical shape with the surrounding diffuse outer shell formed by hydrophilic PEO blocks. The size distribution of the micelles formed by one triblock copolymer was demonstrated by dynamic light scattering technique. The critical micellization phenomena of the copolymers were extensively studied using the pyrene fluorescence dye absorption technique, and the (0,0) band changes of pyrene excitation spectra were used as a probe for the studies. For the copolymers studied in this report, the critical micelle concentrations ranged from 1.3 x 10(-5) to 1.1 x 10(-3) g/mL. For the same PEO block length of 5000, the critical micelle concentrations decreased with an increase in PHB block length, and the change was more significant in the short PHB range. It was found that the micelle formation of the biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and PEO was relatively temperature-insensitive, which is quite different from their counterparts consisting of poly(alpha-hydroxyalkanoic acid) and PEO.  相似文献   

13.
14.
The triblock copolymers, poly(styrene-b-isoprene-b-ε-caprolactone)s (PS-b-PI-b-PCL) have been synthesized successfully by combination of anionic polymerization and ring-opening polymerization. Diblock copolymer capped with hydroxyl group, PS-b-PI-OH was synthesized by sequential anionic polymerization of styrene and isoprene and following end-capping reaction of EO, and then it was used as macro initiator in the ring-opening polymerization of CL. The results of DSC and WAXD show big effect of amorphous PS-b-PI on the thermal behaviors of PCL block in the triblock copolymers and the lower degree of crystalline in the triblock copolymer with higher molecular weight of PS-b-PI was observed. The real-time observation on the polarized optical microscopy shows the spherulite growth rates of PCL27, PCL328 and PS-b-PI-b-PCL344 are 0.71, 0.46 and 0.07 μm s−1, respectively. The atomic force microscopy (AFM) images of the PS90-b-PI66-b-PCL28 show the columns morphology formed by it’s self-assembling.  相似文献   

15.
16.
Well‐defined ABA triblock copolymers in which A stands for poly(ethylene oxide) (PEO) and B for poly(tetrahydrofuran) (PTHF) were synthesized by end‐capping bifunctionally living PTHF with different polyethylene glycol–monomethylethers. Differential scanning calorimetry analysis of these copolymers showed two melting points: one around 55 °C due to the PEO blocks, and one around 30 °C due to the PTHF segments, demonstrating that these block copolymers show extensive phase separation. Upon addition of sodium thiocyanate, crystalline complexes with PEO were formed and as a consequence, the melting points of the PEO segments had shifted to approximately 170 °C, whereas the melting points of the PTHF segments decreased slightly. The obtained materials behave as thermoplastic elastomers up to 160–175 °C. The influence of the relative lengths of the PEO and the PTHF segments on the thermal and mechanical properties of the materials have been investigated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
18.
 Small-angle neutron scattering experiments were made on poly(methyl methacrylate-block-sodium acrylate-block-methyl methacrylate) [p(MMA-b-NaA-b-MMA)] and p(NaA-b-MMA-b-NaA) solutions by varying the composition and the concentration of the polymer with and without 1 M NaCl added. Scattering curves could be evaluated by assuming that the polymers aggregate into polydisperse micelles. The experiments support the expectation that in the case of the p(MMA-b-NaA-b-MMA) block sequence the hydrophilic blocks form closed loops connected by both ends to the micellar cores; in the case of the p(NaA-b-MMA-b-NaA) block sequence they float freely in the solvent. The micellar cores exert considerable stability against dilution and added electrolyte. The interaction of charged micelles could be formally described in terms of volume exclusion and the Derjaguin–Landau–Verwey–Overbeek potential. Received: 20 December 2000 Accepted: 18 August 2001  相似文献   

19.
 Nonionic poly(oxyethylene) surfactant with about ten ethylene oxide units and 1-butanol have been studied in reverse micelles with one nonpolar solvent(n-octane) at different water contents in the presence and in the absence of poly (ethylene oxide) (PEO) using two absorption probes, methyl orange and methyl blue MB and one spin probe, 5-doxylstearic acid. The study has focused attention on the effect of the addition of PEO on the phase behavior of the system, the state of water in the reverse micelles, and the locus of PEO solubilized in reverse micelles. In the presence of PEO, some PEO segments may penetrate into the interface close to the palisade layer of the reverse micelles and then replace some water molecules, which results in a less close arrangement between the chains of surfactants as well as between alcohol molecules. Received: 13 April 1999/Accepted in revised form: 5 November 1999  相似文献   

20.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号